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h i g h l i g h t s

• The method combined double exponential transformations with Sinc collocation method.
• The method efficiently computes energy eigenvalues of anharmonic oscillators.
• Theorematic results establish the convergence properties of DESCM.
• The new choice of mesh size results in substantial improvement of the method.
• The method solves the eigenvalues of both isolated and the multiple well potentials.
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a b s t r a c t

A quantum anharmonic oscillator is defined by the Hamiltonian
H = −

d2

dx2
+ V (x), where the potential is given by V (x) =

m
i=1

cix2i with cm > 0. Using the Sinc collocation method combined
with the double exponential transformation, we develop a method
to efficiently compute highly accurate approximations of energy
eigenvalues for anharmonic oscillators. Convergence properties of
the proposed method are presented. Using the principle of mini-
mal sensitivity, we introduce an alternate expression for the mesh
size for the Sinc collocation method which improves considerably
the accuracy in computing eigenvalues for potentials withmultiple
wells.
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Sinc collocation method
Double exponential transformation

We apply our method to a number of potentials including po-
tentials with multiple wells. The numerical results section clearly
illustrates the high efficiency and accuracy of the proposedmethod.
All our codes are written in Julia and are available upon request.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The one dimensional anharmonic oscillator is of great interest to field theoreticians because it
models complicated fields in one-dimensional space–time [1]. A complete overview of quantum an-
harmonic oscillators would lead to a better understanding of the realistic analytic structure of field
theory. Moreover, outside the realm of field theory, the one dimensional anharmonic oscillator also
provides an approximation to more complicated quantum potentials near a stable stationary point.
The study of quantum anharmonic oscillators as potentials in the Schrödinger equation has been on
the edge of thrilling and exciting research during the past three decades [2–32]. With advances in
asymptotic analysis and symbolic computing algebra, the interest in developing more efficient meth-
ods was renewed recently [33–37]. The Hamiltonian in the time-independent Schrödinger equation
is given by H = −

d2

dx2
+ V (x) for some potential function V (x). In the case of quantum anharmonic

oscillators, the potential V (x) is an even function of the form V (x) =
m

i=1 cix
2i with cm > 0. Sev-

eral approaches have been used for the numerical evaluation of the differential eigenvalue problem
Hψ = Eψ . However, the existing numerical methods are mostly case specific and lack uniformity
when faced with a general problem.

In [2–4], Rayleigh–Schrödinger perturbation series are used to evaluate the ground state energy
for potentials V (x) = x2 + βx2m for β ∈ [0,∞) and m = 2, 3, 4. These summations are strongly
divergent for β ≠ 0. To sum them efficiently, Padé approximants combined with nonlinear sequence
transformations are used. In [5], Rayleigh–Schrödinger perturbation series are also used to evalu-
ate energies of the ground state and the first excited state for potentials V (x) = x2 + βx4. In [6],
Rayleigh–Schrödinger perturbation series are used to evaluate energies of the ground state and the
first four excited states for the Hamiltonian H = −

1
2

d2

dx2
+

1
2x

2
+ λx4 in the limits λ → 0+ and

λ → ∞. In [7], exact soluble models are used to construct Rayleigh–Schrödinger perturbation se-
ries for the eigenvalues of the anharmonic potentials V (A, E) =

1
2Ax

2
+ Ex4. In [8–10], a study of

Rayleigh–Schrödinger perturbation series is presented using the Wentzel–Kramers–Brillouin (WKB)
method and a difference equation method. In [11], an averaging method is proposed to calculate en-
ergy eigenvalues for potentials V (x) = λx2m for m = 2, 3, . . . with λ > 0, V (x) = µx2 + λx4 + ηx6
with η > 0 and V (x) = (ax3 + bx)2 using a supersymmetric WKB approach. Their method yields ap-
preciable accuracy for a variety of potentials and the accuracy increases as the energy level increases.
In [12], the first four terms of the asymptotic expansion for the energy eigenvalues of the potential
V (x) = ax2 + bx4 + cx6 as n → ∞ and in the large coupling limit c → ∞ are found. Since no
exact energy values were available at the time, comparisons with the values obtained via the Hill de-
terminant method are shown. The values obtained using the asymptotic expansion agree with the
values obtained using the Hill determinant method and increase in accuracy as the energy level in-
creases. In [13], an asymptotic expansion is presented for the energy values of potentials of the form
V (x) =

N
i= aixi +

M
j=1 cjx

−j. This method allows for an easier way to obtain analytically the coef-
ficients for the leading terms in the WKB expansion, which normally would require computation of
a considerably large number of complicated contour integrals. As an example of application, the first
seven coefficients of theWKB expansion for the energy eigenvalues of the potentials V (x) = x4 + bx2
and V (x) = x6 are presented. In [14], the WKB method and the Lanczos algorithm are used to calcu-
late energy eigenvalues of the potential V (x) =

1
2x

2
+ λ x2m withm = 2, 3, . . . , 6 to a high accuracy.

Using a starting energy value from a JWKB analysis, their shifted Lanczos algorithm is able to achieve
33 correct digits in three iterations or less for all energy states. In [15], the variational principle is used
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