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a b s t r a c t

Bismuth and its alloys provide a paradigm to realize three di-
mensional materials whose low-energy effective theory is given
by Dirac equation in 3 + 1 dimensions. We study the quantum
transport properties of three dimensional Dirac materials within
the framework of Landauer–Büttiker formalism. Charge carriers
in normal metal satisfying the Schrödinger equation, can be split
into four-component with appropriate matching conditions at the
boundary with the three dimensional Dirac material (3DDM). We
calculate the conductance and the Fano factor of an interface sep-
arating 3DDM from a normal metal, as well as the conductance
through a slab of 3DDM. Under certain circumstances the 3DDM
appears transparent to electrons hitting the 3DDM. We find that
electrons hitting the metal-3DDM interface from metallic side can
enter 3DDM in a reversed spin state as soon as their angle of inci-
dence deviates from the direction perpendicular to interface. How-
ever the presence of a second interface completely cancels this
effect.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

After discovery of graphene [1], the concept of Dirac fermions became a live and daily-life concept
to condensedmatter physicists. In the regimeof low-energy excitations, the single-particle excitations
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in graphene obey an effective Hamiltonian that is identical to two dimensional Dirac equation [2].
Some of the intriguing properties inherited from the relativistic-like form of the underlying Dirac
equation are, Klein tunneling [3], unconventional Hall effect [4,5], bipolar super-current [6] and so
on. Parallel to the developments in graphene physics, inspired by original proposal of Haldane [7]
based on the honeycomb lattice structure of graphene, Kane and Mele constructed a model for two-
dimensional topological insulator (TI) [8]. Later on other models of TIs carrying edge modes due to
their non-trivial topology were theoretically constructed [9] and experimentally verified [10]. Three
dimensional counterparts of the TIs displaying gap in the bulk, and massless Dirac fermions on their
surface [11] were all based on the Bismuth element.

The elemental Bismuth was studied since a long time ago and the low-energy effective theory
around the L point of Brillouin zone was proposed by Wolff [12] based on two-band approximation
of Cohen [13]. It was found that effective theory describing the spin–orbit coupled bands of Bismuth
is indeed a three dimensional (3D) massive Dirac theory. Later, this picture of 3D Dirac fermions was
confirmed experimentally [14–17]. For a recent review on Dirac fermions in Bismuth see Ref. [18].
More recently, massless 3D Dirac fermionswere observed at theΓ point of Brillouin zone of the Na3Bi
compound [19]. This provides us with condensed matter realization of both massive and massless
Dirac fermions in three spatial dimensions. Therefore it is timely to study the transport properties of
3D Dirac electrons in various settings.

In this paper, we investigate the ballistic transport of 3D Dirac fermions across a boundary
separating the 3D Dirac material (3DDM) from the normal metal, as well as the quantum transport
through a segment of 3DDM sandwiched between two metallic leads as depicted in Fig. 1. The
dynamics of charge carriers inside the 3DDM is described by the 3D Dirac equation, while the
electronic states inside the normal metallic leads are governed by the scalar Schrödinger equation.
Due to such a difference in the governing equations in the two sides of the interface, the boundary
condition matching the electronic states will be tricky and one has to choose the wave-functions so
as to give identical current density in both sides of the interfaces separating 3DDM and the normal
metals. In the following sections we will formulate this problem and will calculate the transport
properties in the ballistic regime within the Landauer–Büttiker formalism.

2. Formulation of the problem

The structure of junctions that we consider in this work is depicted in Fig. 1. In metallic region the
carriers obey the Schrödinger equation thatmeans thewave functionsφ is a one-component function;
whereas in 3DDM the wave-function ψ describing the charge carrier is a four component spinor
satisfying the 3D Dirac equation. An important question is how to construct a boundary condition
for matching these two different types of wave-functions across the boundary?

For a typical 3DDM we use the isotropic form of the effective Hamiltonian which is given by [20]:

H =

 ∆ 0 ivDqz ivD(qx − iqy)
0 ∆ ivD(qx + iqy) −ivDqz

−ivDqz ivD(−qx + iqy) −∆ 0
−ivD(qx + iqy) ivDqz 0 −∆

 , (1)

where∆ is energy gap, vD is velocity of carriers and qi, i = x, y, z denotes the Cartesian components
of the wave-vector q. The above explicit form corresponds to the following choice of 4 × 4 Dirac
matrices:

αi =


0 iσi

−iσi 0


, β =


σ0 0
0 −σ0


(2)

where σi are Pauli matrices and σ0 is 2 × 2 unit matrix. The γ0 = β and other γi matrices are defined
as

γi = vDβαi = vD


0 iσi
iσi 0


. (3)
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