

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Composition of transfer matrices for potentials with overlapping support

ANNALS

Farhang Loran^a, Ali Mostafazadeh^{b,*}

^a Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran
^b Departments of Mathematics and Physics, Koç University, 34450 Sarıyer, Istanbul, Turkey

HIGHLIGHTS

- Generalizes the composition rule for transfer matrices to potentials with overlapping support.
- Computes the correction term to the standard composition rule.
- Applies the results in the study of unidirectionally invisible potentials.

ARTICLE INFO

Article history: Received 3 March 2015 Accepted 10 April 2015 Available online 20 April 2015

Keywords: Scattering Transfer matrix Complex scattering potential Unidirectional invisibility

ABSTRACT

For a pair of real or complex scattering potentials $v_j : \mathbb{R} \to \mathbb{C}$ (j = 1, 2) with support I_j and transfer matrix \mathbf{M}_j , the transfer matrix of $v_1 + v_2$ is given by the product $\mathbf{M}_2\mathbf{M}_1$ provided that I_1 lies to the left of I_2 . We explore the prospects of generalizing this composition rule for the cases that I_1 and I_2 have a small intersection. In particular, we show that if I_1 and I_2 intersect in a finite closed interval of length ℓ in which both the potentials are analytic, then the lowest order correction to the above composition rule is proportional to ℓ^5 . This correction is of the order of ℓ^3 , if v_1 and v_2 are respectively analytic throughout this interval except at $x = \ell$ and x = 0. We use these results to explore the superposition of a pair of unidirectionally invisible potentials with overlapping support.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: loran@cc.iut.ac.ir (F. Loran), amostafazadeh@ku.edu.tr (A. Mostafazadeh).

http://dx.doi.org/10.1016/j.aop.2015.04.011 0003-4916/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Transfer matrices have numerous applications in a variety of scattering problems in physics and engineering [1,2]. This is mainly because of their composition property that allows for the determination of the scattering properties of a complicated system from the contributions of its simpler constituents. This is most simply described in the standard one-dimensional potential scattering [3].

Consider a possibly complex-valued scattering potential $v : \mathbb{R} \to \mathbb{C}$ with an asymptotic decay rate such that [4]

$$\int_{-\infty}^{\infty} (1+|x|)|v(x)|dx < \infty, \tag{1}$$

and let *k* be a positive real (wave)number. Then every solution of the Schrödinger equation

$$-\psi''(x) + v(x)\psi(x) = k^2\psi(x), \quad x \in \mathbb{R},$$
(2)

satisfies

$$\psi(x) \to A_{\pm} e^{ikx} + B_{\pm} e^{-ikx} \quad \text{as } x \to \pm \infty,$$
(3)

where A_{\pm} and B_{\pm} are possibly *k*-dependent complex coefficients [3]. The transfer matrix **M** of the potential *v* is a *k*-dependent 2 × 2 matrix that fulfils the relation [1]

$$\begin{bmatrix} A_+\\ B_+ \end{bmatrix} = \mathbf{M} \begin{bmatrix} A_-\\ B_- \end{bmatrix}. \tag{4}$$

Similarly to the *S*-matrix, **M** encodes the scattering properties of the potential *v*. Recalling that scattering solutions of (2) are given in terms of the left/right reflection and transmission amplitudes, $R^{l/r}$ and *T*, according to

$$\psi_k^l(x) = \begin{cases} e^{ikx} + R^l e^{-ikx} & \text{for } x \to -\infty, \\ Te^{ikx} & \text{for } x \to \infty, \end{cases} \qquad \psi_k^r(x) = \begin{cases} Te^{-ikx} & \text{for } x \to -\infty, \\ e^{-ikx} + R^r e^{ikx} & \text{for } x \to \infty, \end{cases}$$
(5)

and using (3)–(5), we can express the entries M_{ii} of **M** as [5]

$$M_{11} = T - R^l R^r / T, \qquad M_{12} = R^r / T, M_{21} = -R^l / T, \qquad M_{22} = 1 / T.$$
(6)

These, in particular, imply that det $\mathbf{M} = 1$. We also note that (1) is a sufficient condition for the (global) existence of the Jost solutions, $\psi_{k+} = \psi_k^l/T$ and $\psi_{k-} = \psi_k^r/T$, of (2), [6].

Now, suppose that v can be written as the sum of a pair of scattering potentials $v_j : \mathbb{R} \to \mathbb{C}$ (j = 1, 2) with the same asymptotic decay property as v, such that the support¹ of v_1 lies to the left of that of v_2 . Using I_j to label the support of v_j , we express this condition by $I_1 \prec I_2$.² Under this assumption, we can relate **M** to the transfer matrix **M**_i of v_i according to

$$\mathbf{M} = \mathbf{M}_2 \mathbf{M}_1. \tag{7}$$

This is the celebrated 'composition property' of the transfer matrix. It is also called the 'group property', because transfer matrices belong to the matrix group $SL(2, \mathbb{C})$ and (7) involves the group multiplication for this group [2]. The primary aim of this article is to seek for a generalization of (7) to the cases where $I_1 \cap I_2$ is a finite interval. Without loss of generality, we can identify the latter with $[0, \ell]$, where ℓ is a real parameter signifying the length of $I_1 \cap I_2$, and demand that for all $x_1 \in I_1 \setminus I_2$ and $x_2 \in I_2$, $x_1 < x_2$. We denote this relation by $I_1 \preccurlyeq I_2$ '. Fig. 1 provides a schematic description of this condition. To summarize, we wish to generalize the composition property (7) of the transfer matrix, which holds for $I_1 \prec I_2$, to situations where $I_1 \preccurlyeq I_2$.

¹ The support of a function $f : \mathbb{R} \to \mathbb{C}$ is the smallest closed interval outside which f vanishes.

² ' $I_1 \prec I_2$ ' means that for every $x_1 \in I_1$ and $x_2 \in I_2$, we have $x_1 \leq x_2$.

Download English Version:

https://daneshyari.com/en/article/8202052

Download Persian Version:

https://daneshyari.com/article/8202052

Daneshyari.com