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h i g h l i g h t s

• We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of
difference equations.

• The eigenfunctions labelled by quantum numbers (m, n) can be classified in terms ofm mod kn.
• A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains.
• This work presents a connection between integrable systems and difference equations.
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a b s t r a c t

Eigenfunctions of integrable planar billiards are studied — in par-
ticular, the number of nodal domains, ν of the eigenfunctions
with Dirichlet boundary conditions are considered. The billiards
for which the time-independent Schrödinger equation (Helmholtz
equation) is separable admit trivial expressions for the number
of domains. Here, we discover that for all separable and non-
separable integrable billiards, ν satisfies certain difference equa-
tions. This has been possible because the eigenfunctions can be
classified in families labelled by the same value ofm mod kn, given
a particular k, for a set of quantum numbers, m, n. Further, we ob-
serve that the patterns in a family are similar and the algebraic rep-
resentation of the geometrical nodal patterns is found. Instances of
this representation are explained in detail to understand the beauty
of the patterns. This paper therefore presents a mathematical con-
nection between integrable systems and difference equations.
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1. Introduction

The ‘particle in a box’ has served as amodel for understanding various phenomena in solid state and
nuclear physics — the theory of dynamical systems terms these as ‘billiards’. Studies of their energy
spectra and eigenfunctions, and their connections with quantum chaos have been very fruitful and
exciting. One of the properties of the eigenfunctions of these billiards is the organisation of regions
with positive and negative signs. These domains appear in rather complex forms [1]; their number
displays a near-incomprehensible order if organised in increasing energy. We are familiar with
domains that appear in a system which has two states or phases. For instance, in magnetic materials,
there are regions of positively and negatively aligned spins. Their shapes and areas promise interesting
statistical questions. There has been a lot of interest in studying the nodal domain statistics in recent
times of billiards in two dimensions [2]. Here, we present a general result for the number of nodal
domains of integrable plane polygonal billiards — the geometries are rectangle, circle, ellipse, and
triangles with angles (45, 45, 90), (30, 60, 90) and (60, 60, 60). The great interest in these systems
emerges from the simplicity they seem to present, and their ubiquity in a large number of contexts.

The Schrödinger equation for a particle inside a rectangular box satisfying Dirichlet or Neumann
boundary conditions can be immediately solved. The eigenfunctions are the well-known product of
two sine or cosine functions and the nodal domains make a checkerboard. For the right isosceles
and the equilateral triangle billiards, which are non-separable, the solutions are respectively two and
three terms, each a product of two sinusoidal functions. For the equilateral triangle, we discovered
a difference equation satisfied by the number of nodal domains, νm,n [3], a discrete variable of the
system. In this article, we show that νm,n for all the integrable billiards obey similar difference
equations. This general result is amazing, in view of widely varied findings observed for these
billiards about various statistical measures [4–6]. Interestingly, recent investigations of integrable
lattice systems [7] have also sought to probe the intricate connection between the theory of exactly
integrable discrete systems and the formalism of difference equations.

2. General mathematical formulation

Let D ⊂ R2 be a compact, connected domain on a surface with a smooth Riemannian metric
in two dimensions. Assuming Dirichlet conditions along the boundary ∂D and denoting the
Laplace–Beltrami operator by ∇

2, the eigenvalue problem is formulated as

− ∇
2ψj = Ejψj and ψj|∂D = 0. (2.1)

A nodal domain of the wavefunction ψj is a connected domain in D where ψj ≠ 0, which therefore
defines a maximally connected region wherein the function does not change sign. The subscript j
simply denotes the ordering of the spectrum such that Ej ≤ Ej+1. The importance of the nodal
set arises from the fact that the sequence of the number of nodal domains of the eigenfunctions of
the Schrödinger equation not only bears significant geometric information about the system [8] but
also provides a new criterion for chaos in quantum mechanics [4]. Hence, it may be reasonable to
conjecture that the difference equations also encode the geometry of the system itself.

Any wavefunction ψj on the domain D is characterised by two quantum numbers for manifolds
on R2 which are represented hereafter as m and n, unless specified otherwise, where m, n ∈ N. Let
νm,n denote the total number of nodal domains of the wavefunction ψm,n. Furthermore, let Rk,n be an
equivalence relation defined on the set of wavefunctions as

Rk,n = {(ψ(m1, n), ψ(m2, n)) : m1 ≡ m2(mod kn)}. (2.2)

The relation Rk,n defines a partitionP of the set of wavefunctions into equivalence classes [Ckn]where
Ckn = m mod k n. Here, the parameter k represents the number of linearly independent terms
of which the wavefunction ψm,n is a sum. Consideration of the sequence of νm,n for wavefunctions
that belong to the same class illustrates the rich structure of the difference equations that arise
in two-dimensional integrable billiards. To this end, we introduce the forward difference operator,
∆tF (x1, x2), operating on the first index x1 of a generic function F , with a finite difference t ,
i.e.∆tF (x1, x2) = F (x1 + t, x2)− F (x1, x2).
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