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a b s t r a c t

Discontinuous composites can combine high stiffness and strength with ductility and damage tolerance.
This paper presents an analytical shear-lag model for the tensile response of discontinuous composites
with a ‘brick-and-mortar’ architecture, composed of regularly staggered stiff platelets embedded in a soft
matrix. The formulation is applicable to different types of matrix material (e.g. brittle, perfectly-plastic,
strain-hardening), which are modelled through generic piecewise-linear and fracture-mechanics consis-
tent shear constitutive laws. Full composite stress–strain curves are calculated in less than 1 second,
thanks to an efficient implementation scheme based on the determination of process zone lengths. Para-
metric studies show that the model bridges the yield-slip (plasticity) theory and fracture mechanics,
depending on platelet thickness, platelet aspect-ratio and matrix constitutive law. The potential for using
‘brick-and-mortar’ architectures to produce composites which are simultaneously strong, stiff and ductile
is discussed, and optimised configurations are proposed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most natural structural materials combining high stiffness, high
strength and damage tolerance (e.g. nacre, bone and spider silk)
share a common motif: a discontinuous ‘brick-and-mortar’ archi-
tecture (see Fig. 1a) with staggered stiff inclusions (e.g. fibres or
platelets) embedded in a soft matrix [1,2]. This provides two defor-
mation mechanisms under tension: (i) extension of the inclusions
(which dominates in the elastic domain and confers initial stiff-
ness), and (ii) shearing of the matrix (which promotes large defor-
mations and energy dissipation before failure). It is suggested that
the combination of these two mechanisms in optimised architec-
tures is key to achieving the impressive performance of many nat-
ural composites.

In contrast to natural composites, high-performance Fibre Rein-
forced Polymers (FRPs) typically use continuous fibres, thus
achieving high stiffness and strength but presenting limited ductil-
ity. Mimicking the discontinuous architecture of natural compos-
ites could potentially overcome this limitation and extend the
applicability of FRPs to damage tolerant structures. This requires
designing the material microstructure, and thus modelling the
effect of discontinuities on the response of composites [3,4].

One of the most widespread models for discontinuous compos-
ites is the Kelly–Tyson yield-slip theory [5]. This assumes that the
matrix is perfectly-plastic and transfers stresses between the inclu-
sions by yielding under shear; the performance of the composite is
therefore governed by the matrix’s shear strength Sm. For relatively
low aspect-ratio inclusions and neglecting the thickness of the
matrix, the strength of the composite X1S is related to the overlap-
ping inclusion length lb and inclusion thickness tb (see Fig. 1) by:

X1S ¼ lb � Sm=tb: ð1Þ

This assumes that the inclusions withstand the tensile stresses
required to yield the matrix in shear (i.e. the tensile strength of the
inclusions is Xb P 2 � X1S ). The optimal inclusion geometry is there-
fore defined by a critical overlapping length lbcrit ¼ Xb � tb=ð2 � SmÞ.

An alternative to the plasticity or strength-based approach in Eq.
(1) is a fracture mechanics or toughness-based formulation, which
has been applied to discontinuous FRPs with brittle matrices
[6,7]. Assuming that the composite fails when a mode-II crack
propagates in the matrix from the ends of the inclusions inwards,
and neglecting the effect of friction, the strength of the composite
depends on the matrix’s (or matrix–inclusion interface’s) mode-II
fracture toughness GmIIc through:

X1G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � Eb � GmIIc=tb

q
: ð2Þ
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Eqs. (1) and (2) represent two apparently contradictory criteria
whose applicability has been largely debated in the literature [8–
13]. It is generally accepted that the former is suitable for ductile
matrices (with strain at the ultimate stress above 50%) and the lat-
ter for brittle ones (with strain at the ultimate stress below 10%),
although the exact ductile-to-brittle transition is yet to be defined.
Moreover, Bazant’s theory for size effects in quasi-brittle materials
[14] suggests that the size of the inhomogeneities relatively to that
of the damage process zone also plays a role on the applicability of
strength- and toughness-based criteria.

In addition, some details of the matrix’s response (e.g. constitu-
tive or geometric strain-hardening) are considered to be funda-
mental for the outstanding response of some natural composites
[3,4,15], but are not accounted for in either strength- or tough-
ness-based formulations. Altogether, a more comprehensive mod-
elling framework is required to understand the influence of varying
the matrix constitutive law and the geometry of the inclusions, as
well as to predict the entire stress–strain curve of discontinuous
composites.

The structured architecture of perfectly staggered discontinu-
ous composites allows for the definition of reduced unit-cells,
which simplifies their analysis significantly. However, and despite
extensive work in modelling composites with ‘brick-and-mortar’
architecture [3,4,15,16], no formulation in the literature is able to

cope with a generic range of inclusion sizes and a generic matrix
constitutive law including failure.

This paper presents a model for the influence of discontinuities
on the response of composites, depending on the dimensions of the
inclusions—hereafter referred to as platelets—and matrix shear
response. Section 2 develops a new shear-lag analytical model
for perfectly staggered discontinuous composites, considering a
piecewise linear but otherwise generic matrix constitutive law
(including non-linearity and fracture). Section 3 validates analyti-
cal results through Finite Elements (FE) analyses, examines local
stress fields and the global composite’s response, and presents
parametric studies on platelet geometry and the matrix’s constitu-
tive law. Section 4 discusses the model and its results, its relation
with existing literature, and how it can be used to develop
improved composites. Finally, Section 5 summarises the main
conclusions.

2. Model development

2.1. Shear-lag formulation

Consider the 2D composite with ‘brick-and-mortar’ architecture
represented in Fig. 1a), composed of stiff platelets (identified by the

Nomenclature

Uppercase roman variables
A platelet A
B platelet B
E tensile stiffness
G shear stiffness
Gc critical energy release rate (fracture toughness)
L characteristic length
N total number of matrix subdomains
S shear strength
T characteristic thickness
V volume fraction
X tensile strength

Lowercase roman variables
l length
e tensile failure strain
‘ length of matrix subdomain/process zone
n number of non-central active subdomains
t thickness
s subdomains vector
u displacement
x location along overlap

Lowercase greek variables
a characteristic aspect ratio, a ¼ L=T
e tensile strain
c shear strain
k characteristic coefficient, Eq. (5)
r longitudinal stress
Dr difference in platelet stresses, Dr ¼ rB � rA
s shear stress

Superscripts
b platelet/inclusion (‘brick’)
½i� matrix subdomain
m matrix (‘mortar’)
pz process zone (matrix damage)
1 remote
H ideal geometry for a brittle matrix

Subscripts
II mode-II delamination
M macroscopic response
uc unit-cell response
un unloading response

Fig. 1. Model overview.
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