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a b s t r a c t

In this work we develop a formalism for describing localised
quanta for a real-valued Klein–Gordon field in a one-dimensional
box [0, R]. We quantise the field using non-stationary local modes
which, at some arbitrarily chosen initial time, are completely
localised within the left or the right side of the box. In this
concrete set-up we directly face the problems inherent to a
notion of local field excitations, usually thought of as elementary
particles. Specifically, by computing the Bogoliubov coefficients
relating local and standard (global) quantisations, we show that
the local quantisation yields a Fock representation of the Canonical
Commutation Relations (CCR) which is unitarily inequivalent to
the standard one. In spite of this, we find that the local creators
and annihilators remain well defined in the global Fock space FG,
and so do the local number operators associated to the left and
right partitions of the box. We end up with a useful mathematical
toolbox to analyse and characterise local features of quantum
states in FG. Specifically, an analysis of the global vacuum state
|0G⟩ ∈ FG in terms of local number operators shows, as expected,
the existence of entanglement between the left and right regions
of the box. The local vacuum |0L⟩ ∈ FL, on the contrary, has a very
different character. It is neither cyclic (with respect to any local
algebra of operators) nor separating and displays no entanglement
between left and right partitions. Further analysis shows that
the global vacuum also exhibits a distribution of local excitations
reminiscent, in some respects, of a thermal bath. We discuss how
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the mathematical tools developed herein may open new ways
for the analysis of fundamental problems in local quantum field
theory.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

QuantumField Theory (QFT in short) has proven to be one of themost successful theories in Physics.
Its potential to describe the properties of elementary particles has been richly demonstrated within
the framework of the Standard Model of Particle Physics. The extraordinary agreement between
theoretical and experimental values of themuon g−2 anomaly [1], or the recent experimental success
vindicating the Higgs mechanism after decades of search [2,3], are just two examples among many.

Elementary particles in modern physics are commonly thought of as small localised entities
moving around in space. A careful examination, however, reveals such an interpretation to
be problematic: in QFT a free particle is represented by a superposition of positive-frequency
complex-valued modes which satisfy some field equation (e.g. the Klein–Gordon equation). Yet, no
superposition of positive-frequency modes can be localised within a region of space, even for an
arbitrarily small period of time [4].

This confusing issue is sometimes mistaken as superluminality, see [5] for a clarification. In fact, it
can be shown that the time derivative ψ̇ , for anywave-packetψ composed exclusively out of positive
frequency modes, is non-zero almost everywhere in space.1 For that reason, even if ψ propagates in
a perfectly causal manner according to the Klein–Gordon equation, it can hardly represent a localised
entity. It is problematic to think of the fundamental field excitations of QFT as ‘particles’ in any
common sense of the word.

The problem of localisation can be analysed from other angles, for example in terms of localisation
systems. These are defined in terms of a set of projectors E∆ on bounded spatial regions ∆ whose
expectation values yield the probability of a position measurement to find the particle within ∆. A
theorem by Malament [7] shows that in a Minkowski spacetime, under reasonable assumptions for
the projector algebra, no such non-trivial set of projectors exists. There is also a general result (valid for
both, relativistic or non-relativistic cases) due to Hegerfeldt [4] proving that, assuming a Hamiltonian
with spectrum bounded from below, the expectation value of those projectors is non-zero for almost
all times. In particular this applies also to states naively thought to be localised. Also along this
line, but in order to describe unsharp localisation systems, Busch [8] replaced the use of projectors
by more general operators, ‘‘effects’’ (or Positive-Operator Valued Measures—POVM), showing that
it is impossible to localise with certainty a particle in any bounded region of space. Furthermore,
completing the collection of no-go theorems, Clifton and Halvorson [9] have shown, under a set of
natural requirements, that it is not possible to define local number operators associated to any finite
region of space. At this point it is also worthwhile mention the well-known problems of other efforts,
based on the use of putative observables such as the Newton–Wigner position operator [10–12].

In addition, there is also a different notion of localisation called strict localisability [13,14]. The basic
idea is that a state, localised within a region of space at some specific moment in time, should be
such that the expectation value of any operator associated to a spacelike separated region should
be the same as in the vacuum. In other words, average values of local operators will depend on the
state only if the observation is made in the region where the state is localised. However, as shown
by Knight, no finite superposition of N-particle states can be strictly localised. Some researchers have

1 One way of seeing this is by noting that positive frequency solutions also satisfy the square root of the Klein–Gordon
equation, i.e. the Schrödinger equation iφ̇(x⃗, t) =

√
−∇2 + m2φ(x⃗, t). From there, using the antilocality property of the

operator
√

−∇2 + m2 , it follows that the time derivative φ̇ is necessarily non-zero almost everywhere in space [6].
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