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a b s t r a c t

In this work, we address some important topological and algebraic
aspects of two-qudit states evolving under local unitary operations.
The projective invariant subspaces and evolutions are connected
with the common elements characterizing the su(d) Lie algebra
and their representations. In particular, the roots and weights turn
out to be natural quantities to parametrize cyclic evolutions and
fractional phases. This framework is then used to recast the coset
contribution to the geometric phase in a form that generalizes the
usual monopole-like formula for a single qubit.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Entanglement is an essential component in quantum information protocols. The ability to operate
entangled states without destroying their main features is often the central task in experimental im-
plementations. Pure state entanglement can bemeasured by the concurrence [1], which is insensitive
to local unitary operations on the individual subsystems. Under these evolutions, the geometric phase
acquired by maximally entangled pairs of qubits has been predicted to occur in discrete steps [2–4].
This discussion has been recently extended tomultiple qubits [5]. Phase steps, where a factor eiπ is in-
troduced, have been experimentally demonstratedwith qubits encoded on spin–orbit lasermodes [6],
nuclear spins [7] and entangled photon pairs [8].

In Ref. [9], based on the kinematic approach developed by Mukunda and Simon [10,11], we inves-
tigated entangled qudits under unitary local operations, identifying some geometrical and topological
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aspects. In particular, the geometric phase was calculated in terms of the concurrence, and fractional
phases in cyclic evolutions were identified and analyzed. The extension to pairs of qudits with differ-
ent dimensionswas done in Ref. [12],where the overlap of the evolving and initial statewas illustrated
with numerical examples in two-qutrit and qubit–qutrit systems.

Experimental setups for the observation of fractional phases for entangled qudits [13] andmultiple
qubits [14] have already been proposed. Quantum gates based on geometric phases have been
studied in the literature as a robust means for quantum computation [15,16]. In addition, fractional
phases have been conjectured as a possible resource for fault tolerant quantum computation, though
associated with a different physical situation. Namely, the fractional statistics due to the multiply
connected nature of the configuration space of anyons [17]. Because of the various experimental and
theoretical contexts involved, it is worth seeking for a thorough understanding of entangled qudit
pairs operated by local unitary evolutions.

In this work, we provide further insight into the different mathematical aspects involved. Initially,
we shall obtain the fundamental homotopy group for the projective space of separable states and that
for general rank-d states. Next, we will show how the su(d) Lie algebra structure provides the appro-
priate tools to characterize two-qudit states, fractional and geometric phases. For example, evolutions
containing a Cartan factor along the weights of SU(d) representations are those generating fractional
phases. Moreover, by using a time-dependent Lie algebra basis, we will show how to write the coset
contribution to the geometric phase in terms of local Cartan elements nq, q = 1, . . . , d− 1, projected
along the fundamental weights of su(d). These contributionswill correspond to a generalization of the
monopole-like Berry phase for a single qubit, where the phase can be expressed as the flux of a topo-
logical charge density on S2, for an S2 → n̂ ∈ S2 mapping. The mathematics involved turns out to be
that needed to discuss center vortices [18–22] and non Abelian monopoles [23] in Yang–Mills–Higgs
models with SU(d) → Z(d) spontaneous symmetry breaking.

In Section 2, we review some general properties of invariant projective subspaces and compute
the fundamental homotopy groups for separable and rank-d pure states. In Section 3, we relate local
evolutions andnonAbelian connections, defined in terms of a local Lie algebra basis. In that section,we
also showwhat are the possible evolutions leading to fractional phases. Section 4 is devoted to identify
the Mukunda–Simon geometric phase as a sum weighted by d invariants under local evolutions, as
well as by the weights of the fundamental SU(d) representation. This phase is then carefully worked
out to recast the coset sector as a superposition of monopole-like contributions. Finally, in Section 5
we present our conclusions.

2. The topology of invariant subspaces

In Quantum Mechanics, an important concept is that of the projective space of states, which is
essentially a topological space such that different points represent physically distinct quantum states.
This space can be obtained by considering the equivalence relation between (normalized) kets,

|ψ⟩ ∼ |ψ ′
⟩ if |ψ⟩

′
= eif |ψ⟩, (1)

which induces a partition of the Hilbert space into equivalence classes, and then identifying points
within each class to form a quotient space. For a Hilbert space Hn of complex dimension n, the
associated projective space is the manifold CP n−1, whose real dimension is 2n − 1. As the group of
unitary transformations U(n) acts transitively on Hn, CP n−1 can also be written as the quotient of
U(n) by the stability group associated with any state vector |ψ0⟩. Alternatively, noting that U = eiφ Ū,
with Ū ∈ SU(n), CP n−1 is the quotient of SU(n) by the stability group H ⊂ SU(n) that leaves the ket
|ψ0⟩ invariant (up to a phase),

H = {h ∈ SU(n)/h|ψ0⟩ = eiχ |ψ0⟩}. (2)

As is well-known, H is isomorphous to U(n − 1),

h =


(det u)−1 O1×(n−1)
O(n−1)×1 u


, u ∈ U(n − 1), (3)
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