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h i g h l i g h t s

• We find solutions to the Coulomb impurity problem of graphene in magnetic fields.
• All eigenenergies are discrete and real.
• When the Coulomb potential is sufficiently strong it must be regularized.
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a b s t r a c t

Analytical solutions to the Coulomb impurity problem of graphene
in the absence of a magnetic field show that when the dimension-
less strength of the Coulomb potential g reaches a critical value the
solutions become supercritical with imaginary eigenenergies. Ap-
plication of a magnetic field is a singular perturbation, and no ana-
lytical solutions are known except at a denumerably infinite set of
magnetic fields. We find solutions to this problem by numerical di-
agonalization of the largeHamiltonianmatrices. Solutions are qual-
itatively different from those of zeromagnetic field. All energies are
discrete and no complex energies are allowed. We have computed
the finite-size scaling function of the probability density contain-
ing an s-wave component of the Dirac wavefunctions. This func-
tion depends on the coupling constant, regularization parameter,
and the gap. In the limit of vanishing regularization parameter our
findings are consistent with the expected values of the exponent
ν which determines the asymptotic behavior of the wavefunction
near r = 0.
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1. Introduction

States of relativistic electrons in the three dimensional Coulomb impurity problem can become
supercritical when the charge of the nucleus becomes sufficiently large [1]. Recently similar problem
has attracted a lot of attention in two-dimensional graphene. The Hamiltonian [2,3] is

H = vF σ⃗ ·


p⃗ +

e
c
A⃗


−
Ze2

ϵr
+∆σz, (1)

where σ⃗ = (σx, σy) and σz are the Pauli spin matrices (p⃗ is the two-dimensional momentum and ϵ is
the dielectric constant). A magnetic field B⃗ is applied perpendicular to the two-dimensional plane and
the vector potential A⃗ is given in a symmetric gauge. In the presence of a finite mass gap∆ a new term
∆σz is added to the Hamiltonian. Angularmomentum J is a good quantumnumber andwavefunctions
of eigenstates have the form

Ψ J(r, θ) = ei(J−1/2)θ

χA(r)
χB(r)eiθ


. (2)

It consists of A and B radial wavefunctionsχA(r) andχB(r)with channel angularmomenta J−1/2 and
J + 1/2, respectively. The half-integer angular momentum quantum numbers have values J = ±1/2,
±3/2, . . .. In this paper we will consider only states that have an s-wave component, namely states
with J = ±1/2.

The dimensionless coupling constant of the Coulomb potential is

g =
Ze2

ϵh̄vF
. (3)

In the absence of a magnetic field and zero mass gap subcritical and supercritical regimes separate at
the critical coupling constant gc = 1/2 [4,5]. In subcritical regime g < 1/2 no natural length scale
exists since the Bohr radius is undefined when ∆ = 0, and no boundstates exist and only scattering
states exist (when∆ ≠ 0 the effective Bohr radius is given by λ =

1
g

h̄vF
∆

). This is quite contrast to the
Coulomb impurity problem of an ordinary two-dimensional electron in magnetic fields with the Bohr
radius ϵ h̄2

me2
[6] (m is the electron mass). In the supercritical regime g > 1/2 a spurious effect of the

fall into the center of potential appears [7,1]: the solution diverges in the limit r → 0 and exhibits
pathological oscillations near r = 0.

This spurious effect can be circumvented by regularizing the Coulomb potential with a length scale
R [8], and physically acceptable complex energy states (quasi-stationary levels) appear [1]. A resonant
state with angular momentum J = 1/2 has a complex energy E that depends on g [5]

E
ER

= −(1.18 + 0.17i)e
−nπ√
g2−g2c (4)

for g − gc ≪ 1 and∆ = 0, where the characteristic energy scale associated with the length scale R is

ER = h̄vF/R. (5)

In the limit R → 0 the size of the wavefunction goes to zero and the real part of the energy diverges
toward −∞, see Eq. (4). These results indicate that the electron falls to the center of potential. In the
presence of a gapGamayun et al. [5] find that the critical coupling constant for the angularmomentum
J = 1/2 is

gc(∆, ER) =
1
2

+
π2

log2

c ∆ER

 , (6)

where c ≈ 0.21. Complex energies appear for g > gc . According to this result the presence of a mass
gap does not change the critical value gc = 0.5 in the limit R → 0.
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