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Theoretical analysis and numerical simulations are performed to investigate the buckling and postbuck-
ling behaviors of stiff lamellae embedded in a compliant matrix under uniaxial compression. First, the
analytical solution is derived for the critical compressive strain and wrinkle wavelength of a stiff layer
sandwiched between two different soft layers, in which the effects of interfacial shear stresses and matrix
thicknesses have been taken into account. During postbuckling, the system may keep the sinusoidal
buckling shape or bifurcate into period-doubling morphology. A phase diagram is established, which
enables us to easily predict the morphological evolution from the geometric and material parameters
of the system. Then the above analysis is extended to two or more parallel stiff lamellae within a
compliant matrix. Different buckling modes are found in such multilayer systems, i.e., short-wave mode,
long-wave mode, and hierarchical mode. This study not only sheds light on the stability and morpholog-
ical evolution of lamella composites and structures but also helps understand the morphogenesis of some
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biological tissues.
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1. Introduction

Sandwich composite structures consisting of stiff lamellae
embedded in a compliant matrix are widely observed in geology
[1-3], flexible or stretchable electronics [4], and biological tissues
[5-7]. For example, some geological structures are composed of
multiple layers with different thicknesses and mechanical proper-
ties. Due to crustal movements, wavy morphologies may form in
the geological structures, which have been analyzed by using the
soil-rock-soil model [1]. Some animal reflectors also have wavy
multilayer structures. The crustacean of the crab Ovalipes molleri
possesses a reflector composed of multiple solid layers within a
very soft matrix, which has a function to broaden the reflectance
band [6]. The keratinous sheaths of bovine horns have a multilay-
ered structure with hierarchical wavy microstructures, which
renders an enhanced toughening effect [7]. Besides, sandwich com-
posite structures also find technological applications in thin-film
metrology. They have some advantages over the traditional
film-substrate systems, in which a stiff layer rests on a compliant
substrate and interfacial delamination is apt to occur [8-10]. When
a thin film or lamella is sandwiched between two soft layers, the
bilateral confinement can efficiently prevent the occurrence of
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interfacial delamination. In engineering applications, on one hand,
buckling represents a typical failure mode of sandwiched compos-
ite structures and should be avoided in service [4,11,12]. On the
other hand, the instability of sandwich composite structures can
be harnessed to control wave propagation, create band gaps, and
filter undesirable frequencies, by varying the material, thickness,
and spacing of the layers [13].

In the past decades, considerable attention has been paid to the
buckling of traditional film-substrate structures [14-21]. When a
stiff film lying on a compliant substrate is subjected to an in-plane
compressive strain, the system may become unstable, rendering a
sinusoidal surface morphology. The wrinkling wavelength / obeys
a scaling law of i~(Eg/Es)'3, where E; and E are the elastic moduli
of the thin film and substrate, respectively. This solution works
only for a substrate of infinite thickness. For a thin substrate, the
scaling law becomes i~(Ef/Es)'/4, showing the significant role of
the substrate thickness in the film buckling. With further increase
in the compressive strain beyond the first buckling, the sinusoid
wrinkling can be broken and progressively evolve into a period-
doubling and even period-quadrupling pattern. To date, however,
the buckling behavior of multilayered lamellae embedded in a
compliant matrix remains elusive. Currie et al. [1] predicted the
elastic buckling of a stiff beam embedded in a matrix by using
the energy method. Parnes and Chiskis [4] developed a sandwich
composite model to describe the elastic buckling of layer/fiber
reinforced composites. Recently, Li et al. [22] considered the
buckling of interfacial layers in stratified composites through
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theoretical analysis, experiments and finite element simulations.
These previous studies assumed that the stiff beams or lamellae
are embedded in an infinite matrix. In most practical structures
and biological systems, however, the matrix is often finite in
thickness.

In the present paper, therefore, we investigate, through
theoretical analysis and numerical simulations, the buckling and
morphological transition of sandwich structures consisting of stiff
layers embedded in a soft matrix of finite thickness. This paper is
organized as follows. In Section 2, a theoretical model is first pre-
sented to analyze the critical buckling of a lamella sandwiched
between two compliant layers. The nonlinear postbuckling process
is also examined to reveal the morphological transition in this sys-
tem. In Section 3, we study the structures consisting of two or
more parallel lamellae embedded in a soft matrix, which may
buckle into different patterns. Finally, the main conclusions from
this study are summarized in Section 4.

2. A lamella sandwiched between two soft matrix layers of
different thicknesses

2.1. Theoretical model

First, consider a stiff lamella sandwiched between two compli-
ant matrices of finite thicknesses, as shown in Fig. 1a. Refer to the
Cartesian coordinate system (O-xy), where the origin O is located
at the middle plane of the lamella, and the x and y axes are along
and normal to the lamella, respectively. The thicknesses of the
lamella, matrix-1 and matrix-2 are h, H; and H,, respectively. In
the critical buckling analysis, all materials are assumed to be linear
elastic and isotropic so that the problem can be solved analytically.
Denote the Young’s moduli of the lamella, matrix-1 and matrix-2
as E, E,; and E.pp, and their Poisson’s ratios as o, vy and vqo,
respectively. The system is subjected to in-plane compressive
strain ¢ along the x direction. Plane-strain conditions are assumed
in the (x, y) plane. The lamella is flat when the nominal compres-
sive strain ¢ is relatively small, and then it will buckle into a sinu-
soidal morphology when ¢ exceeds a critical value, ¢. Since the
wrinkling wavelength of a lamella is generally much larger than
its thickness, the von Karman nonlinear elastic plate theory is
adopted for the lamella in this study. Linear perturbation analysis
is first performed to predict the critical condition for the onset of
buckling. The effect of interfacial shear stresses between the
lamella and the matrix layers is taken into account. The equilib-
rium equations of the lamella are [8,18]
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where u and w are the displacements in the x and y directions,
E=E/(1 - v?) is the plane-strain elastic modulus of the lamella,
g, and 7, (o0=1, 2) denote the normal and shear stresses at the
interface between the lamella and matrix-c, respectively. We intro-
duce sinusoid perturbations w =wpy, cos (kx) and u = uy, sin (kx),
where k = 2m// is the wavenumber, / is the wavelength, wy, and
Uy, are the amplitudes.
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Fig. 1. (a) A stiff lamella sandwiched between two compliant layers (matrix-1 and
2), where g, and 7, (o = 1, 2) denote the interfacial normal and shear stresses acting
on the lamella, respectively. (b) A system consisting of two parallel lamellae in
compliant matrices.

In the absence of body forces, the equilibrium condition of the
matrix can be expressed as the Lamé-Navier equation:

_ 2@ | ) _

(1 =2um) V" +uj; =0, (2)
where u{” are the displacement components, and o takes the value
of 1 and 2 for matrix-1 and 2, respectively.

For the considered multilayer system, global or Euler buckling
may occur when the thicknesses of the matrices are small [23].
In the present paper, however, our attention is focused on the local
buckling patterns and morphological evolution of one or more
lamellae sandwiched between two compliant matrices. To exclude
both rigid-body motions and global buckling, we specify the
following boundary conditions:

w = wy, cos(kx), uV) = uysin(kx) aty=h/2, 3)

oy =0, 0, =0 aty=h/2+H,,

w® = wy, cos(kx), u® =uysin(kx) aty=—h/2, )
wi? =0, Oy =0 aty=-h/2 — H,.

Following the procedure presented in [24], Eq. (2) can be
transformed into two ordinary differential equations of displace-
ments u‘* and w'* for each matrix. Then using the boundary
conditions in Egs. (3) and (4), the fields u® and w* can be
solved. Further, the stresses at the lamella-matrix interfaces are
obtained as qy=qmycos (kx) and 7T, = Ty, Sin(kx), whereand
Eng = Ema/(1 — v2,,) is the plane-strain elastic moduli of matrix-c.

Em(1— yml)k{um[(l — 2H2K® — 20m1) + (—1 + 20m1) cOSh(2HK)] + Win[~4H k(=1 + vm1) + 2(~1 + vmy) sinh(2H, k)]}

Am1 =

5+ 2H*K® + 401 (=3 + 20m1) + (3 — 4vmy) cosh(2H; k)
Emi(1 — vm)k{um[4H1 k(=1 + Um1) + 2(—1 + 1) sinh(2H k)] + Wi [1 — 2(H?K? + Um1) + (=1 + 20m1) cosh(2H; k)] }

Tm =

5+ 2HK? + 401 (=3 + 20m1) + (3 — 40m1) cosh(2H; k)
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