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We formulate a new approach to solving the initial value problem of the shallow water-wave equations 
utilizing the famous Carrier–Greenspan transformation (Carrier and Greenspan (1957) [9]). We use a 
Taylor series approximation to deal with the difficulty associated with the initial conditions given on a 
curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions, 
large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami 
wave inundation models in a more realistic 2-D setting.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Tsunami modeling and forecast is an important scientific prob-
lem impacting coastal communities worldwide. Many models for 
tsunami wave propagation use the 2 + 1 shallow water equations 
(SWE), an approximation of the Navier–Stokes equation [1]. These 
numerical models must be continuously verified and validated to 
ensure the safety of coastal communities and infrastructure [2]. 
Apart from verification against data from actual tsunami events, 
numerical models are also extensively verified against analytical 
solutions of the 2 + 1 SWE which exist for idealized bathyme-
tries [3]. These analytical solutions also give important qualitative 
insight to tsunami run-up and amplification.

Typically, the process of tsunami generation is considered as 
an instant vertical motion of the sea bottom ignoring the wa-
ter velocities in the source. However, incorporation of the water 
velocities into the initial conditions is important from physical 
point of view, see for instance [4]. For a more complete analy-
sis of tsunami hydrodynamics, modeling and forecast, we refer the 
reader to [1–3,5,6].

A classical example of an analytical solution for the 2 + 1 SWE 
is computing the run-up of long-waves on a sloping beach [7]. Be-

* Corresponding author.
E-mail address: djnicolsky@alaska.edu (D. Nicolsky).

cause of the symmetric bathymetry, the 2 + 1 SWE reduce to the 
1 + 1 SWE, which could be solved directly in the physical space 
[8] or in the new coordinates using the Carrier–Greenspan trans-
formation [9]. The SWE in the transformed coordinates has been 
extensively studied as an initial value problem (IVP) [4,10–13] and 
as a boundary value problem [7,14]. The IVP for waves with non-
zero initial velocity have been previously derived using a Green’s 
function in [4,10], though both solutions imply assumptions re-
garding the initial velocity as discussed later. Thus, the complete 
and exact solution to the IVP for waves with nonzero initial veloc-
ities remains a long standing open problem [4,14,15].

The 1 + 1 SWE for the sloping beach have recently been gen-
eralized to model waves in sloping narrow channels using the 
cross-sectionally averaged 1 + 1 SWE [16]. Furthermore, the hodo-
graph transform given by [9] can be generalized to sloping bays 
with arbitrary cross sections, allowing a much richer problem to 
study [17]. Though the cross-sectionally averaged 1 + 1 SWE have 
no analytical solution for bays with arbitrary cross sections, an an-
alytical solution exists for symmetric U-shaped bays, i.e. bays with 
a cross section z ∝ ym [16–18]. The known solution for sloping 
beaches is an asymptotic solution of such bays when m → ∞.

In this letter we propose a new approach to solve the IVP for 
the cross-sectionally averaged 1 + 1 SWE in U-shaped bays for 
waves with arbitrary initial velocities exactly. Our solution uses a 
Taylor expansion to deal with the initial data given on a curve (un-
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Fig. 1. Definition sketch: (a) x–z cross section with perturbed and unperturbed wa-
ter heights, not to scale. (b) y–z cross section of a plane beach where m = ∞, 
a parabolic bay where m = 2, and a V-shaped bay where m = 1. (c) The curve � on 
which the initial conditions are prescribed in the transformed space for the wave 
shown in (a), not to scale.

der the Carrier–Greenspan transformation the line t = 0 is mapped 
to a curve in the transformed plane), a problem that was not 
sufficiently treated in the previous solutions. This allows run-up 
computation of near shore long waves, unlike the previous IVP 
solutions that require the initial wave to be far from shore [4]. 
Additionally, we present some qualitative geophysical implications 
using this new solution.

2. Solution of the IVP

The cross-sectionally averaged 1 +1 SWE for U-shaped bays de-
scribe the evolution of long waves in a sloping narrow bay with 
an unperturbed water height h(x) = x along the main axis of the 
bay in dimensionless form. The wave is assumed to propagate uni-
formly through the bay in the x direction, a valid assumption as 
shown in [18,19]. The cross-sectionally averaged SWE for such bays 
in dimensionless form are given by [16,18] to be

ηt + u(1 + ηx) + β2(x + η)ux = 0, (1a)

ut + uux + ηx = 0, (1b)

where u(x, t) and η(x, t) are the horizontal depth-averaged ve-
locity and free-surface elevation along the main axis of the bay, 
respectively, and β2 = m/(m + 1) is the wave propagation speed 
along a constant depth channel. An arbitrary scaling parameter l is 
used to introduce the dimensionless variables x = x̃/l, η = η̃/(lα), 
u = ũ/

√
gαl and t = t̃

√
gα/l. Here x̃, ̃t, η̃ and ũ are the dimen-

sional variables, g is the gravitational acceleration, and α is the 
slope of the incline.

We use the form of the Carrier–Greenspan transformation pre-
sented in [15],

ϕ = u, ψ = η + u2

2
(2a)

s = x + η, λ = t − u, (2b)

to reduces (1) to the linear system

	λ + A(s)	s + B	 = 0, (3)

where 	(s, λ) =
(

ϕ(s, λ)

ψ(s, λ)

)
, A(s) =

(
0 1

β2s 0

)
, and B =

(
0 0
1 0

)
. 

This form of the Carrier–Greenspan transformation has two useful 

properties, the moving shoreline is fixed at s = 0 and the result-
ing linear system, (3), is the linear SWE. For comparison to other 
texts, specifically [4,7,9,17], the transform variable σ = 2

√
s/β is 

typically used, along with the introduction of a potential function 
to form a single linear second order partial differential equation.

We consider (3) with the general initial conditions in physi-
cal space η(x, 0) = η0(x) and u(x, 0) = u0(x). Under transforma-
tion (2b), η0(x) and u0(x) transform into initial conditions on a 
parameterized curve � in the (s, λ) plane, depicted in Fig. 1c, 
which leads to a non-trivial IVP. It is natural to parameterize this 
curve using the coordinate x, � = {�(x) : x > x0}, where

�(x) = (
s(x), λ(x)

) = (
x + η0(x),−u0(x)

)
, (4)

and x0 is the x position of the shoreline at time t = 0. The initial 
condition is then given by

	|�(x) = 	0(x) =
(

u0(x)
η0(x) + u2

0(x)/2

)
. (5)

A general solution to (3) can be found using the Hankel trans-
form to be [16,18]

ψ(s, λ) = s− 1
2m

∞∫
0

{a(k) cos(βkλ) + b(k) sin(βkλ)}

× J1/m
(
2k

√
s
)

dk, (6a)

ϕ(s, λ) = 1

β
s− 1

2m − 1
2

∞∫
0

{a(k) sin(βkλ) − b(k) cos(βkλ)}

× J1/m+1
(
2k

√
s
)

dk, (6b)

where Jν(α) is the Bessel function of the first kind of order ν , 
and a(k) and b(k) are arbitrary functions determined by the initial 
conditions. We note that the apparent singularities at s = 0 are 
removed using the asymptotic of the Bessel function of the first 
kind around zero.

In the piston model of generation, i.e. with zero initial velocity, 
the curve � coincides with the line λ = 0. For arbitrary initial con-
ditions on the line λ = 0, using the inverse Hankel transform, we 
have that

a(k) = 2k

∞∫
0

ψ(s∗,0)s
1

2m∗ J 1
m

(
2k

√
s∗

)
ds∗, (7a)

b(k) = −2βk

∞∫
0

ϕ(s∗,0)s
1

2m + 1
2∗ J 1

m +1

(
2k

√
s∗

)
ds∗. (7b)

For waves with zero initial velocity, using (5) and a simple change 
of variables, (7) simplifies to b(k) = 0, and

a(k) = 2k

∞∫
x0

η0(x∗)
(
x∗ + η0(x∗)

) 1
2m J 1

m

(
2k

√
x∗ + η0(x∗)

)

× (1 + η′
0(x∗))dx∗, (8)

where primes denote derivatives in x. Using (6), ϕ(s, λ) and ψ(s, λ)

can be computed. The solution is then transformed to physical 
space using (2). The solution over a large number of grid points 
can be found by interpolation using Delaunay triangulation, as 
in [18]. Alternatively, Newton–Raphson iterations can be used to 
find the solution for a particular location x or time t , as in [7,11].

If the initial wave has an initial velocity, the curve � may be 
complicated so that an exact solution does not exist. Reference [4]
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