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We formulate a new approach to solving the initial value problem of the shallow water-wave equations
utilizing the famous Carrier-Greenspan transformation (Carrier and Greenspan (1957) [9]). We use a
Taylor series approximation to deal with the difficulty associated with the initial conditions given on a
curve in the transformed space. This extends earlier solutions to waves with near shore initial conditions,
large initial velocities, and in more complex U-shaped bathymetries; and allows verification of tsunami

wave inundation models in a more realistic 2-D setting.
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1. Introduction

Tsunami modeling and forecast is an important scientific prob-
lem impacting coastal communities worldwide. Many models for
tsunami wave propagation use the 2 + 1 shallow water equations
(SWE), an approximation of the Navier-Stokes equation [1]. These
numerical models must be continuously verified and validated to
ensure the safety of coastal communities and infrastructure [2].
Apart from verification against data from actual tsunami events,
numerical models are also extensively verified against analytical
solutions of the 2 + 1 SWE which exist for idealized bathyme-
tries [3]. These analytical solutions also give important qualitative
insight to tsunami run-up and amplification.

Typically, the process of tsunami generation is considered as
an instant vertical motion of the sea bottom ignoring the wa-
ter velocities in the source. However, incorporation of the water
velocities into the initial conditions is important from physical
point of view, see for instance [4]. For a more complete analy-
sis of tsunami hydrodynamics, modeling and forecast, we refer the
reader to [1-3,5,6].

A classical example of an analytical solution for the 2 + 1 SWE
is computing the run-up of long-waves on a sloping beach [7]. Be-
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cause of the symmetric bathymetry, the 2 +1 SWE reduce to the
1+ 1 SWE, which could be solved directly in the physical space
[8] or in the new coordinates using the Carrier-Greenspan trans-
formation [9]. The SWE in the transformed coordinates has been
extensively studied as an initial value problem (IVP) [4,10-13] and
as a boundary value problem [7,14]. The IVP for waves with non-
zero initial velocity have been previously derived using a Green's
function in [4,10], though both solutions imply assumptions re-
garding the initial velocity as discussed later. Thus, the complete
and exact solution to the IVP for waves with nonzero initial veloc-
ities remains a long standing open problem [4,14,15].

The 1+ 1 SWE for the sloping beach have recently been gen-
eralized to model waves in sloping narrow channels using the
cross-sectionally averaged 1+ 1 SWE [16]. Furthermore, the hodo-
graph transform given by [9] can be generalized to sloping bays
with arbitrary cross sections, allowing a much richer problem to
study [17]. Though the cross-sectionally averaged 1+ 1 SWE have
no analytical solution for bays with arbitrary cross sections, an an-
alytical solution exists for symmetric U-shaped bays, i.e. bays with
a cross section z o« y™ [16-18]. The known solution for sloping
beaches is an asymptotic solution of such bays when m — co.

In this letter we propose a new approach to solve the IVP for
the cross-sectionally averaged 1+ 1 SWE in U-shaped bays for
waves with arbitrary initial velocities exactly. Our solution uses a
Taylor expansion to deal with the initial data given on a curve (un-
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Fig. 1. Definition sketch: (a) x-z cross section with perturbed and unperturbed wa-
ter heights, not to scale. (b) y-z cross section of a plane beach where m = oo,
a parabolic bay where m =2, and a V-shaped bay where m = 1. (c) The curve I' on
which the initial conditions are prescribed in the transformed space for the wave
shown in (a), not to scale.

der the Carrier-Greenspan transformation the line t =0 is mapped
to a curve in the transformed plane), a problem that was not
sufficiently treated in the previous solutions. This allows run-up
computation of near shore long waves, unlike the previous IVP
solutions that require the initial wave to be far from shore [4].
Additionally, we present some qualitative geophysical implications
using this new solution.

2. Solution of the IVP

The cross-sectionally averaged 141 SWE for U-shaped bays de-
scribe the evolution of long waves in a sloping narrow bay with
an unperturbed water height h(x) = x along the main axis of the
bay in dimensionless form. The wave is assumed to propagate uni-
formly through the bay in the x direction, a valid assumption as
shown in [18,19]. The cross-sectionally averaged SWE for such bays
in dimensionless form are given by [16,18] to be

e+ u(l+ 1) + B2 (x + )y =0, (1a)
Ue + utly + 1x =0, (1b)

where u(x,t) and n(x,t) are the horizontal depth-averaged ve-
locity and free-surface elevation along the main axis of the bay,
respectively, and 2 =m/(m + 1) is the wave propagation speed
along a constant depth channel. An arbitrary scaling parameter [ is
used to introduce the dimensionless variables x = x/I, n = 7j/(l),
u=i/,/gal and t =f,/ga/l. Here X,t,7 and i are the dimen-
sional variables, g is the gravitational acceleration, and « is the
slope of the incline.

We use the form of the Carrier-Greenspan transformation pre-
sented in [15],

2

w=n+”7 (2a)

A=t—u, (2b)

Y=1u,
S=x+1,

to reduces (1) to the linear system

®; + A(s)Ds + B =0, (3)

(s, ) (0 1 _ (0 0
where ®(s, ) = <W(5, )\)>, A(s) = (ﬁzs 0)' and B = (] 0).

This form of the Carrier-Greenspan transformation has two useful

properties, the moving shoreline is fixed at s =0 and the result-
ing linear system, (3), is the linear SWE. For comparison to other
texts, specifically [4,7,9,17], the transform variable o = 24/s/8 is
typically used, along with the introduction of a potential function
to form a single linear second order partial differential equation.

We consider (3) with the general initial conditions in physi-
cal space n(x,0) = no(x) and u(x,0) = ug(x). Under transforma-
tion (2b), no(x) and up(x) transform into initial conditions on a
parameterized curve I' in the (s,A) plane, depicted in Fig. 1c,
which leads to a non-trivial IVP. It is natural to parameterize this
curve using the coordinate x, I' = {I"(x) : x > xo}, where

T'(x) = (s(), Ax)) = (x + 1o(x), —uo(x)), (4)

and xp is the x position of the shoreline at time t = 0. The initial
condition is then given by

up(x)
Ho() + u%,(x>/2> : (5)

A general solution to (3) can be found using the Hankel trans-
form to be [16,18]

q>|I‘(><)=<1>0(X)=(

v(s,A) = s / {a(k) cos(Bkr) + b(k) sin(Bkxr)}
0

X Jl/m (Zk\/g) dk, (6&)

o, A= %s’ﬁ’% / {a(k) sin(BkA) — b(k) cos(Bk))}
0

X J1/ms1 (2k+/5) dk, (6b)

where [, () is the Bessel function of the first kind of order v,
and a(k) and b(k) are arbitrary functions determined by the initial
conditions. We note that the apparent singularities at s = 0 are
removed using the asymptotic of the Bessel function of the first
kind around zero.

In the piston model of generation, i.e. with zero initial velocity,
the curve I' coincides with the line A = 0. For arbitrary initial con-
ditions on the line A = 0, using the inverse Hankel transform, we
have that

a(k) =2k/1p(s*,0)s§'" J1 (2ky/55) ds, (7a)
0
b(k) = —Zﬂk/go(s*,O)s,fL’"Jr%JlH (2k/55) ds.s. (7b)
0

For waves with zero initial velocity, using (5) and a simple change
of variables, (7) simplifies to b(k) =0, and

r 1
) =2k [ o) (x. + 10x) 7 1y (2 F o)
Xo
x (1+ Ué(X*))dX*, (8)

where primes denote derivatives in x. Using (6), ¢(s, A) and ¥ (s, 1)
can be computed. The solution is then transformed to physical
space using (2). The solution over a large number of grid points
can be found by interpolation using Delaunay triangulation, as
in [18]. Alternatively, Newton-Raphson iterations can be used to
find the solution for a particular location x or time t, as in [7,11].

If the initial wave has an initial velocity, the curve I" may be
complicated so that an exact solution does not exist. Reference [4]
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