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The apparent incompatibility between quantum theory and general relativity has long hampered efforts 
to find a quantum theory of gravity. The recently proposed positive formalism for quantum theory 
purports to remove this incompatibility. We showcase the power of the positive formalism by applying it 
to the black hole to white hole transition scenario that has been proposed as a possible effect of quantum 
gravity. We show how the characteristic observable of this scenario, the bounce time, can be predicted 
within the positive formalism, while a traditional S-matrix approach fails at this task. Our result also 
involves a conceptually novel use of positive operator valued measures.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most approaches to quantum gravity rely substantially both 
on classical general relativity and on quantum theory. Quantum 
theory as it is usually understood relies on an a priori notion 
of time that is essential to the consistent interpretation of joint 
measurements. That is, the knowledge of the temporal order of 
measurements is a prerequisite for making predictions about their 
outcomes. On the other hand, in general relativity it is only the 
outcomes of measurements that reveal the spacetime structure and 
their temporal order. This incompatibility between core principles 
of general relativity and quantum theory in its usual form has 
posed a serious challenge for any attempt at bringing both the-
ories together [1].

The most common approach to work around this problem has 
been to consider a situation where the strong gravity regime is 
confined to a compact spacetime region. Measurements take place 
only in an asymptotic region where gravity is weak and the metric 
is held fixed. This restriction appears to be physically well moti-
vated and in close analogy to how measurements are defined in 
quantum field theory via the S-matrix. There, one assumes that 
particles can be approximated as free at very early and very late 
times in Minkowski spacetime, with interactions confined to in-
termediate times and treated perturbatively. Evidently, the per-
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turbative treatment of the metric itself is more problematic than 
the perturbative treatment of other fields living on top of a fixed 
metric. It is well known that a straightforward quantum field 
theoretic treatment of perturbative general relativity fails due to 
non-renormalizability [2]. The example in this paper sheds further 
doubt on whether a perturbative approach in the spirit of the S-
matrix to a gravitational theory can succeed even in principle.

It has been argued for some time [3] that the requirement for 
an absolute notion of time is not inherent to quantum theory, but 
an artifact of the standard formulation of quantum theory, which 
was conceived in the 1920s to resemble non-relativistic classical 
mechanics. A suitable, more fundamental framework for formulat-
ing quantum theory is now at hand in the form of the positive for-
malism [4–6]. This does not require an a priori notion of time and 
is fully compatible with the principles of general relativity, thus 
doing away with the apparent incompatibility. We demonstrate 
in this note how the positive formalism is capable of extracting 
predictions in quantum gravity where the conventional S-matrix 
approach fails. We focus on the example of a black hole to white 
hole transition and the associated bounce time.

2. A simple black hole bounce model

In general relativity, a black hole forms when sufficient mass 
density is reached. Spacetime acquires a singularity inside the 
black hole, signaling a break down of classical general relativity. 
It is widely believed that such singularities are an artifact of the 
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Fig. 1. Schematic Penrose diagram of black hole to white hole transition. A distant 
observer can infer the bounce time τ by observing the passage, first of the collaps-
ing and then of the expanding shell.

purely classical treatment of gravity and will not be present in a 
quantum theory of gravity [7]. One proposed mechanism for avoid-
ing singularities is that of a bounce [8]. That is, when in-falling 
matter starts to form a black hole, an effective repulsive force 
arises from quantum effects. This eventually leads to the forma-
tion of a white hole, which is a time reversed black hole, expulsing 
all matter to the surrounding spacetime. Note that this is distinct 
from the well established effect of Hawking radiation [9], which 
we neglect.

To model this process in the simplest possible way, we con-
sider an in-falling spherically symmetric shell of matter with flat 
Minkowski spacetime in the interior. We further suppose that this 
shell is infinitesimally thin and contracts at the speed of light. 
Physically, there is only one relevant parameter that characterizes 
this contraction process, the mass-energy m of the shell. In clas-
sical general relativity a black hole of mass m would form and 
that would be the end of the story. We assume on the contrary 
that quantum effects cause the formation of an infinitesimally thin 
shell of matter of energy m that expands at the speed of light, 
leaving a flat Minkowski spacetime in the interior. While no met-
ric satisfying Einstein’s equations can describe this process in all of 
spacetime, it turns out that the initial black hole and final white 
hole metrics can be matched outside a “small” spacetime region 
that encloses the would-be singularity [10]. That is, the process 
conforms to general relativity everywhere, except in this spacetime 
region which we suppose to be governed by quantum gravity, see 
Fig. 1. What is more, the freedom in matching is described by a 
single parameter τ , called the bounce time [11]. A distant observer 
aware of its local spacetime geometry can measure the bounce 
time τ by registering the passages of the collapsing and the ex-
panding shells. It corresponds to the time that would have elapsed 
between the end of the contraction of the collapsing shell to a 
point and the start of the expansion of the expanding shell from a 
point.

In order to formalize the problem, we divide spacetime into 
two regions, Q and X . Q is the strong gravity region, enclosed by 
the dashed line in Fig. 1. X is the weak gravity region outside of 
the dashed line that covers the remainder of spacetime. We denote 
by � the hypersurface that separates the two regions, indicated by 
the semicircular part of the dashed line. The classical physics in X
is described by two parameters, the shell mass m and the bounce 
time τ . That is, the space of solutions L X of the equations of mo-
tions in X can be written as L X = [0, ∞) × [0, ∞). (The bounce 

time is taken to be bounded by 0 from below.) For simplicity we 
take the phase space or space of initial data L� at the hypersurface �
to be identical to L X . (Generically one should expect L X to restrict 
to a Lagrangian submanifold of L� on the hypersurface [12].)

Suppose for the moment that rather than a quantum theory of 
gravity we considered a modified classical theory of gravity that 
would cause the bounce. This would yield for each shell mass m
a bounce time τc(m). More formally, we would have a space L Q

of solutions of the classical equations of motions in Q . On the 
hypersurface � this would give rise to the subspace of L� of those 
initial data that take the form (m, τc(m)) for some m, which we 
shall also call L Q . In this way L Q is a 1-dimensional subspace of 
the 2-dimensional phase space L� .

How can we predict the bounce time from a quantum theory of 
gravity? Suppose we follow the standard formulation of quantum 
theory and an S-matrix type approach. We should have a Hilbert 
space H of states of our system that describes its degrees of free-
dom well at least at early and at late times. At intermediate times 
interactions become important and in our case even metric space-
time itself ceases to exist as a classical entity. We then expect to 
describe this intermediate regime through an S-matrix S :H →H. 
In the present case the initial and final states should describe the 
collapsing and the expanding shells respectively. However, viewed 
separately, neither the initial nor the final state carries any infor-
mation about the bounce time. On the contrary, the states are the 
same for any bounce time. To obtain the bounce time we need 
an observer that continuously measures its surrounding spacetime 
metric, in particular using a clock. What is more, this is not a time 
measurement on a fixed metric background. Rather, the asymptotic 
metric is different for each bounce time and it is precisely this dif-
ference that encodes the bounce time.

3. Essentials of the positive formalism

The shortcomings of the S-matrix in a quantum gravity context 
provided an important motivation for the general boundary formula-
tion as a new approach to the foundations of quantum theory [3]. 
The development of this approach [13], originally based on topo-
logical quantum field theory [14], has recently lead to the positive 
formalism [5,6].1 This provides in particular a formulation of quan-
tum theory that implements locality without requiring a metric 
spacetime background [4].

In short, the positive formalism is a framework for codifying 
physical theories by describing the possible processes occurring in 
them and provides a mechanism for predicting the outcomes of 
these processes. Processes include measurements, observations, in-
terventions, but also “free evolution”. In the local or spacetime ver-
sion of the positive formalism of interest here, spacetime is cut up 
into regions so that a process is taken to occur in each region. The 
positive formalism then prescribes how these processes are com-
posed and how outcomes for the resulting composite process are 
predicted. Crucially, at this level of description spacetime does not 
necessarily carry a fixed metric, but may have only a fixed topol-
ogy.

In order to parametrize the possible interactions or “signals” 
between processes in adjacent spacetime regions, for each inter-
facing hypersurface � there is a set B+

� of (proper) boundary con-
ditions. Mathematically, this is the positive cone of a real partially 
ordered vector space B� (of generalized boundary conditions). This 
comes from the fact that we are allowed to form new boundary 
conditions by probabilistically combining given ones with positive 

1 The formalism used in earlier papers on the general boundary formulation is 
now called the amplitude formalism. Its relation to the positive formalism is explained 
for bosonic theories in [4,6] and for fermionic theories in [4,15].
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