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The focusing Zakharov–Shabat scattering problem on the infinite line with non-zero boundary conditions 
for the potential is studied, and sufficient conditions on the potential are identified to ensure that 
the problem admits only purely imaginary discrete eigenvalues. The results, which generalize previous 
work by Klaus and Shaw, are applicable to the study of solutions of the focusing nonlinear Schrödinger 
equation with non-zero background.
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1. Introduction

The nonlinear Schrödinger (NLS) equation is a universal model 
that describes the evolution of weakly nonlinear and quasi-
monochromatic wave trains in media with cubic nonlinearities. 
As such, it arises in many disparate physical settings such as wa-
ter waves, optics, acoustics, Bose–Einstein condensation, etc. It is 
also known since the pioneering work of Zakharov and Shabat in 
1972 [30] that the NLS equation in one spatial dimension is a 
completely integrable system, and as such it can be written as the 
compatibility condition of an overdetermined pair of linear ordi-
nary differential equations, which are called the Lax pair. Zakharov 
and Shabat also showed that the initial-value problem for the NLS 
equation could be solved by the inverse scattering transform. Ac-
cordingly, the first half of the Lax pair for the NLS equation is 
referred to as the Zakharov–Shabat scattering problem, and the 
solution of the NLS equation plays the role of a potential there. 
Therefore, the study of Zakharov–Shabat scattering problems has 
been an ongoing area of research (e.g., see [5,17,20,27]).

Recall that the NLS equation is the compatibility condition of 
the matrix Lax pair

vx = (−iζ σ3 + Q (x, t))v , (1a)

vt = (2iζ 2σ3 + 2kQ − i Q xσ3 − i Q 2σ3)v , (1b)

* Corresponding author.
E-mail address: biondini@buffalo.edu (G. Biondini).

where v(x, t, ζ ) = (v1, v2)
T , and

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, Q (x, t) = i

(
0 q
−r 0

)
(2)

(with σ1 to be used later). That is, the requirement vxt = vtx , to-
gether with the constraint r = νq∗ , yields the NLS equation,

iqt + qxx − 2ν|q|2q = 0 , (3)

where q : R × R → C, subscripts denote partial derivatives and 
as usual ν = ∓1 denote the focusing and defocusing cases, re-
spectively. Equation (1a) is referred to as the Ablowitz–Kaup–
Newell–Segur scattering problem [3]. The Zakharov–Shabat scat-
tering problem is the special case of (1) when r(x, t) = νq∗(x, t)
[with the asterisk denoting complex conjugation], in which case 
the compatibility condition of (1) yields precisely the NLS equa-
tion (3).

Equation (1a) can equivalently be written as the eigenvalue 
problem Lv = ζv for the Dirac operator L = iσ3(∂x − Q ). The spec-
trum of the scattering problem is the set of all values of ζ ∈ C

such that nontrivial bounded eigenfunctions v(x, t, k) exist, and 
such values of ζ are referred to as the eigenvalues of the scatter-
ing problem. In particular, values ζ ∈ C such that v(x, t, k) ∈ L2(R)

are referred to as the discrete eigenvalues of the problem. (As we 
discuss below, the above definition differs slightly from the one 
typically used in the development of the inverse scattering trans-
form (IST), in which discrete eigenvalues are defined as the zeros 
of the analytic scattering coefficients.) The structure of the Lax pair 
implies that, when the potential evolves in time according to the 
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NLS equation, the spectrum of L is independent of time. For this 
reason, we will drop the time dependence throughout this work.

In the defocusing case the Dirac operator L is self-adjoint 
[31], and therefore all eigenvalues are real. In the focusing case 
(ν = −1), however, L is non-self adjoint. One can show that the 
reduction r = νq∗ implies that the spectrum of L is symmetric 
with respect to the real ζ -axis. It is also well known that, if the po-
tential is even, the spectrum is also symmetric with respect to the 
imaginary ζ -axis. A natural question, however, is whether there ex-
ist special classes of potentials for which the spectrum possesses 
additional symmetries.

The above question was studied in 2002 by Klaus and Shaw 
[21]. Specifically, Klaus and Shaw considered a class of potentials 
q(x) that are non-negative, smooth, L1 functions on the real line, 
and such that q(x) is nondecreasing for x < 0 and nonincreasing for 
x > 0. They were then able to show that any discrete eigenvalues 
ζ of (1a) are purely imaginary.

The study of nonlinear wave equations with non-zero boundary 
conditions (NZBC) also has a long history [17,31], and has received 
renewed attention in recent years (e.g., see [4,7–9,11,14,15,23] and 
references therein), due also in part to connections with various 
physical effects such as rogue waves [6,29], modulational insta-
bility [7,12,13], the dynamics of dispersive shock waves [1,2] and 
polarization shifts [10]. A limitation of Klaus and Shaw’s result, 
however, is that it only applies to decaying potentials.

The properties of scattering operators with NZBC can be quite 
different from those of the same operators with ZBC. For example, 
it is well known that an “area theorem” exists for the Zakharov–
Shabat operator with ZBC: no discrete eigenvalues can exist if 
the L1 norm of the potential is less than π/2 [22]. (This bound, 
which improves the original one [3], is sharp.) However, it was 
recently shown that no generalization of the area theorem is pos-
sible for the same operators with NZBC, either in the focusing [7]
or in the defocusing [14] case. In other words, the situation for 
the Zakharov–Shabat operator with NZBC is dissimilar to that for 
the same operators with ZBC, and is more similar instead to that 
for the Schrödinger operator L = −∂2 + q(x), which defines the 
scattering problem for the Korteweg–deVries equation [18]. On the 
other hand, in this work we show that the results of [21] do admit 
a straightforward generalization to potentials with NZBC.

To do this, we generalize the notion of “single-lobe” potentials 
to the case of NZBC. Specifically, we will call a single lobe poten-
tial with NZBC a function q(x) which is: (i) smooth on real line, 
(ii) nondecreasing for x < 0 and nonincreasing for x > 0, (iii) lim-
iting to q(x) → q0 as x → ±∞, where q0 > 0 is a constant, and 
(iv) q(x) − q0 ∈ L1(R). This definition allows us to obtain the main 
result of this work, which is the following

Theorem 1.1. Let q(x) be a smooth, real-valued function on the real line 
such that

q(x) → q0 as x → ±∞, q(x) > q0 for x ∈R,

where q0 > 0 is a constant. Moreover, let q(x) − q0 ∈ L1(R). If q(x) is 
nondecreasing for x < 0 and nonincreasing for x > 0, any discrete eigen-
value ζ of the scattering problem (1a) is purely imaginary, and |ζ | > q0 .

In section 2 we give the proof of Theorem 1.1, and in section 3
we discuss a few examples to illustrate that both of the hypothe-
ses of the theorem (namely, constant-phase and single-lobe condi-
tions) are indeed necessary. Section 4 ends this work with a few 
concluding remarks.

2. Proof of Theorem 1.1

The strategy of the proof follows that in [21], but the imple-
mentation is somewhat different due to the NZBC. First we derive 

some upper bounds regarding the behavior of the Jost eigenfunc-
tions corresponding to a discrete eigenvalue. Then we derive a 
constraint that relates discrete eigenvalues to certain integrals of 
the corresponding eigenfunctions. Finally we use the bounds to es-
tablish that the real part of the discrete eigenvalue must vanish 
identically.

2.1. Jost eigenfunctions and upper bound estimates

Recall that in the IST for the focusing NLS equation with NZBC 
[8] one defines the Jost eigenfunctions as the solutions of (1a)
which tend to plane wave behavior either as x → ∞ or as x →
−∞. In particular, for our purposes it is sufficient to introduce the 
columns φ(x, ζ ) and ψ(x, ζ ) as

φ(x, ζ ) =
(

λ + ζ

−iq0

)
e−iλx(1 + o(1)), x → −∞, (4a)

ψ(x, ζ ) =
( −iq0

λ + ζ

)
eiλx(1 + o(1)), x → +∞, (4b)

where λ(ζ ) is defined by the equation λ2 = ζ 2 + q2
0. The set of 

values ζ ∈ C such that λ(ζ ) ∈ R comprises the discrete spec-
trum of the scattering problem. In our case, this is the set 
 =
R ∪ i[−q0, q0]. Without loss of generality, one can define λ(ζ ) for 
all ζ ∈ C through the analytic continuation of the principal branch 
of the real square root off the positive real ζ -axis with a square-
root sign discontinuity across the branch cut [−iqo, iqo]. It is easy 
to show that, with this definition, the sign of the imaginary part 
of λ(ζ ) is the same as that of ζ away from the branch cut.

The Zakharov–Shabat scattering problem possesses the usual 
reflection symmetry such that for every eigenvalue ζ in the upper-
half plane there is a corresponding eigenvalue ζ ∗ in the lower-half 
plane [8]. Thus, without loss of generality we can restrict ourself 
to studying the discrete eigenvalues in the upper-half plane.

The Jost eigenfunctions (4) are rigorously defined as the solu-
tions of suitable linear integral equations [8]. For example,

φ(x, ζ ) =
(

λ + ζ

−iq0

)
e−iλx

+
x∫

−∞
G−(x − y, ζ )(Q (y) − Q 0)eiλ(y−x)φ(y, ζ )dy, (5)

where

G−(x − y, ζ ) = 1

2λ
[(1 + e2iλ(x−y))λI

− i(e2iλ(x−y) − 1)(iζσ3 + Q 0)], (6)

with

Q 0 =
(

0 q0
−q0 0

)
, I =

(
1 0
0 1

)
(7)

and a similar equation for ψ(x, ζ ). Using these integral equations, 
it was shown in [8] that, as is usually the case in the IST, both 
φ(x, ζ ) and ψ(x, ζ ) admit analytic continuation to the upper half 
of the complex ζ plane.

Suppose now that λ(ζ ) = α + iβ is a discrete eigenvalue corre-
sponding to a certain value of ζ in the closure of the upper-half 
plane. It was shown in [8] that, as is usually the case in the IST, 
the associated Jost eigenfunctions φ(x, ζ ) and ψ(x, ζ ) at this spe-
cific value of ζ are proportional each other, and that any of the 
L2(R) eigenfunctions v(x, ζ ) associated to ζ are proportional to 
both of them. Because our definition of discrete eigenvalues re-
quire the corresponding eigenfunctions to be in L2(R) (as opposed 
to simply being bounded), it follows that β = Imλ must be strictly 
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