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We investigate the soliton dynamics of the electromagnetic wave propagating in an inhomogeneous or 
deformed ferromagnet. The dynamics of magnetization and the propagation of electromagnetic waves 
are governed by the Landau–Lifshitz–Maxwell (LLM) equation, a certain coupling between the Landau–
Lifshitz and Maxwell’s equations. In the framework of multiscale analysis, we obtain the perturbed 
integral modified KdV (PIMKdV) equation. Since the dynamic is governed by the nonlinear integro-
differential equation, we rely on numerical simulations to study the interaction of its mKdV solitons 
with various types of inhomogeneities. Apart from simple one soliton experiments with periodic or 
localised inhomogeneities, the numerical simulations revealed an interesting dynamical scenario where 
the collision of two solitons on a localised inhomogeneity create a bound state which then produces 
either two separated solitons or a mKdV breather.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The problem of nonlinear excitations in ferromagnetic models 
has been under extensive investigations for many years due to 
its wide range of applications in real material systems [1–4]. For 
instance, ferromagnetic materials with different interactions have 
had a lot of importance in the context of data storage and allowed 
a faster coding of binary information. With these types of exchange 
interactions in the material, a localization phenomenon can be 
used to improve on these technological issues. Based on the avail-
ability of various nonlinear mechanisms in different physical fields, 
Ref. [5] has shown the importance of soliton dynamics for un-
derstanding physical phenomena and designing new experiments. 
Remarkable experiments in the past decade [6,7] used the prop-
agation of electromagnetic (EM) waves in ferromagnetic mediums 
to demonstrate that magnetic field component of this EM wave 
could serve as a better option for the storage technology, using 
the fact that the magnetization can be manipulated to be aligned 
with a certain direction. This process is called magnetization rever-
sal or switching and is possible only because the magnetization is 
localised as a soliton structure in both the space and time domain.
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These qualitative features of the effect of EM waves on the 
magnetization dynamics can be understood theoretically by solv-
ing the associated nonlinear equations [8,9]. The soliton propa-
gation in a ferromagnetic medium under the effect of EM wave 
was first studied by Nakata [8] using a multiscale approach on 
the celebrated Landau–Lifshitz equation coupled with the Maxwell 
equation. The magnetization dynamics in terms of solitary waves 
with long wavelengths is governed by the modified KdV equa-
tion. Extended studies were carried out by Leblond [10–15] who 
developed similar theories for several such applications. In these 
models, the dispersion relation has two possible phase velocities 
for the solitons, one case is studied in [8] and the other propaga-
tion mode was studied by Leblond in [11] and corresponds to KdV 
equation. In case of ferromagnetic slabs, a short solitary wave has 
been derived in [13] and the excitations are classified in polariton 
range. The background instability is suppressed by narrowing the 
slab and corresponds to the magnetization reversal.

When damping is included in the system, the nonlinear mod-
ulation and the solitons are governed by nonlinearity, dispersion 
and damping [14]. For small values of damping, the magnetiza-
tion is governed by nonlinear Schrödinger (NLS) equation and the 
solitons cancel the effect due to damping. For large values of 
the damping, the wave decreases exponentially and no nonlinear 
modulation can occur and the dynamic is described by a per-
turbed NLS equation. In the three-dimensional case, the expected 
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localised electromagnetic pulse was obtained in the focusing and 
defocusing cases from Davey–Stewartson (DS) equation admitting 
certain integrability conditions, as reported in [15]. The reduction 
to (2 + 1)-dimensional system is not integrable through the IST 
method for the hyperbolic–hyperbolic and elliptic–elliptic defocus-
ing case. Corrections to the above model in the one-dimensional 
case have been obtained by taking into account Heisenberg ex-
changes, uniaxial anisotropies, the antiferromagnetic character of 
the medium and effects of damping due to the presence of free 
charges [16–18]. In these models, the propagation dynamics is de-
scribed by the usual NLS family of equations. The effect of per-
turbation due to the presence of free charges in a conducting 
ferromagnetic medium [17] shows structural perturbations on the 
soliton, such as for example in [14].

In the studies we just mentioned, the focus was mainly on 
the magnetization of the medium and not on the wave evolu-
tion. However, waves should not be excluded when an exchange 
coupling is introduced in the ferromagnetic medium. In this set-
ting, nonlinear excitations in classical models with significant ex-
change couplings have been studied widely in the past for the 
existence of solitons [19–30]. These investigations are devoted to 
the excitations and soliton solutions that are affected by the EM 
waves. Hence, it is necessary to exploit the excitations including 
the higher order exchange interactions.

Recently, the present author investigated the helimagnetic sys-
tem in analogy to cholesteric liquid crystal and showed that EM 
waves are modulated in the form of solitons described by general-
ized derivative NLS equation [31]. In this letter, the inhomogeneous 
or site-dependent exchange model is considered for the study of 
soliton dynamics when coupled with the EM wave propagation.

1.1. Structure of the paper

In section 2 of this paper, we present the model and discuss the 
inhomogeneity of magnetic materials. In section 3 the dynamical 
system is reduced to the perturbed integral modified KdV equa-
tion using the multiscale analysis. Section 4 is devoted to solving 
the PIMKdV equation using numerical simulations and several ef-
fects of inhomogeneities are discussed, in particular periodic, and 
localised inhomogeneities, with the new process of emergence of 
breathers from soliton collisions on a wall. The summary of the 
investigation is presented in section 5.

2. Inhomogeneous magnetic system

2.1. The Maxwell–Landau equation

We use a coupling between the classical Landau–Lifshitz model 
for the magnetization density function M(x, t) = (Mx, M y, Mz) and 
Maxwell’s equations for the propagation of EM waves in ferro-
magnetic chains, see [32]. This results in the celebrated Maxwell–
Landau (ML) model taking into account the Heisenberg exchange 
couplings and inhomogeneities while neglecting anisotropies, given 
by

∂M

∂t
= M ∧ [

J ( f Mxx + fxMx) + γ H
]
, (1)

1

c2

∂2

∂t2
(H + M) = −∇(∇ · H) + ∇2H , (2)

where the constant J is the exchange integral, γ is the gyro-
magnetic ratio and the function f captures the inhomogeneities. 
In general f is a function of both space and time, such as f =
μ1(t)x + ν1(t) but the physical interpretation as a model for a fer-
romagnet is less clear for time-dependent functions. f is therefore 
taken as a time-independent function [33]. Finally, c2 = 1/

√
μ0ε0, 

where μ0 is the magnetic permeability and ε0 is the dielectric 
constant of the medium. The external magnetic field is coupled via 
the magnetic field component H of the EM wave. Since this model 
is inhomogeneous we only focus here on the one-dimensional 
study of the above equations (1) and (2) and leave the study of 
this higher dimensional equation for future works.

2.2. On inhomogeneities

Inhomogeneities otherwise known as deformations in a system 
may either be due to external fields or to the presence of defects, 
voids and gaps in the material. In the first case, inhomogeneities 
arise when a ferromagnetic medium lying in the (x − y) plane 
is magnetized either in the longitudinal axis say x direction or 
transverse axis say y direction. When saturated along the longi-
tudinal axis, a medium exhibits a homogeneous effective field Hint
but when magnetized in the transverse axis, the induced effective 
field Hint is inhomogeneous, see [34]. These types of deformations 
are called field deformations. In the other case, a site-dependent 
function f is introduced into the Hamiltonian to model the lat-
tice defects such that the corresponding exchange integral is bond 
dependent, see for example [35]. These lattice defects introduce a 
lattice distortion thereby leading the material to a deformed one. 
Such a dependence can occur if (a) the distance between neigh-
bouring atoms varies along the chain, hence altering the overlap 
of electronic wavefunctions (assumed to be identical at all sites), 
or (b), if the wavefunction itself varies from site to site, even 
for equally spaced atoms. As examples of the case (a), we can 
mention charge transfer complexes TCNQ [36] where the inhomo-
geneity function f acting as a coefficient of exchange interactions 
is a set of random variables. Another example arises in organo-
metallic insulators TTF-bisdithiolenes [37] for which f randomly 
alternates between two values along the chain. A chain system is 
natural for modelling inhomogeneities due to defects, although it 
may still be applicable in the case of weakly disordered systems 
with peaked wavefunctions such that a small change in the lat-
tice constant causes a relatively large change in the atom overlap. 
These inhomogeneities can be modelled in the effective Hamilto-
nian for a one-dimensional magnetic insulator placed in a weak, 
static, inhomogeneous electric field or by the introduction of im-
perfections (impurities or organic complexes) in the vicinity of a 
bond to alter the electronic wavefunctions without causing appre-
ciable lattice distortions. By gradually changing the concentration 
of impurities along the chain, it is possible to engineer a controlled 
inhomogeneity function f .

3. Dynamics of Maxwell–Landau model

3.1. Scaling

We will now use the approach of multiscale analysis to reduce 
the coupled vector equations (1) and (2) to a nonlinear equation 
for a scalar field u(x, t). The multiscale analysis or the reductive 
perturbation method is a generalized asymptotic analysis method 
for solving the Maxwell–Landau model by reducing it to soliton 
equations and possibly integrable equations [16–18,38]. We first 
introduce the following slow space and time variables, depending 
on a small parameter ε and two exponents m and n,

ζ = εm(x − V t) , τ = εnt . (3)

The slow space variable ζ describes the shape of the pulse propa-
gating at speed V and the time variable τ is the time evolution of 
this pulse during the propagation. The parameter ε measures the 
weakness of the perturbation effect.
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