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The excitable behaviour is considered as motion of a particle in a potential field in the presence of 
dissipation. The dynamics of the oscillator proposed in the present paper corresponds to the excitable 
behaviour in a potential well under condition of positive dissipation. Type-II excitability of the offered 
system results from intrinsic peculiarities of the potential well, whose shape depends on a system state. 
Concept of an excitable potential well is introduced. The effect of coherence resonance and self-oscillation 
excitation in a state-dependent potential well under condition of positive dissipation are explored in 
numerical experiments.

© 2018 Published by Elsevier B.V.

1. Introduction

The phenomenon of coherence resonance was originally discov-
ered for excitable systems [1–6] and then for non-excitable ones 
[7–10]. This effect implies that noise-induced oscillations become 
more regular for an optimal value of the noise intensity. Coher-
ence resonance is a frequent occurrence in neurodynamics [2,11,4,
12] as well as in microwave [13] and semiconductor [14,15] elec-
tronics, optics [16–20], thermoacoustics [21], plasma physics [22], 
and chemistry [23–25].

The noise-induced dynamics of excitable systems in the regime 
of coherence resonance is similar to the self-oscillatory behaviour. 
The similarity is complemented by the fact that noise-induced os-
cillations corresponding to the coherence resonance can be syn-
chronized mutually or by external forcing [26–28]. Moreover, the 
synchronization of the noise-induced oscillations occurs in a simi-
lar way as for a deterministic quasiperiodic system [29].

Similarity of nature of self-oscillation excitation and excitabil-
ity is also seen in the context of interpretation of the dynamics as 
motion of a particle in a potential field in the presence of dissi-
pation. In such a case, a mathematical model of the system under 
study is presented in the following oscillatory form:

d2 y

dt2
+ γ

dy

dt
+ dU

dy
= 0, (1)

E-mail address: semenov.v.v.ssu@gmail.com (V.V. Semenov).

where the factor γ characterizes the dissipation, U is a function 
denoting the potential field. Mathematically, a paradigmatic model 
for type-II excitability is the FitzHugh-Nagumo system [30,31]:⎧⎪⎪⎨
⎪⎪⎩

ε
dx

dt
= x − x3

3
− y,

dy

dt
= x + a + ξ(t),

(2)

where the parameter ε sets separation of slow and fast motions, 
the parameter a determines the oscillatory dynamics, ξ(t) is a 
source of noise. In the oscillatory form (1) the model (2) becomes:

ε
d2x

dt2
+

(
x2 − 1

) dx

dt
+ x + a = −ξ(t), (3)

and describes stochastic motion of a point mass in the potential 
U (x) = x2

2ε + a
ε x in the presence of dissipation defined by the func-

tion γ = γ (x) = x2−1
ε . In case |a| < 1 the dissipation function γ (x)

possesses negative values in the vicinity of a local minimum of a 
potential well. It denotes energy pumping, which leads to instabil-
ity of an equilibrium point, and self-sustained oscillation excitation 
occurs [Fig. 1 (a)]. Energy balance between dissipation and pump-
ing during the period of the self-oscillations is organized after 
short transient time. The same self-oscillation excitation principle 
works in the Van der Pol [32] and Rayleigh [33] systems and in 
other examples of self-oscillators realizing the Andronov–Hopf bi-
furcation as well as in excitable systems with type-I excitability, 
where transition to the self-oscillatory regime is associated with 
the saddle-node bifurcation (see for example the two-dimensional 
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Fig. 1. Self-oscillatory (a) and excitable (b) regimes of the system (2) in numerical 
simulation: phase space structure (upper panels) and corresponding potential func-
tion U (x) (lower panels). The equilibrium point is shown by the blue circle; the blue 
dashed line indicates the nullcline ẏ = 0; the orange solid line shows the nullcline 
ẋ = 0. Phase trajectories of the deterministic system (in case ξ(t) ≡ 0) are shown 
by black arrowed lines. Intrawell oscillations of a particle (the red circle on the 
lower panels) in the absence of noise are schematically shown by the red arrowed 
lines. The area corresponding to negative values of the dissipation function γ (x) is 
coloured in grey. The green trajectory on the panel (b) corresponds to the system 
driven by white Gaussian noise (ξ(t) = √

2Dn(t), < n(t) >= 0, < n(t)n(t + τ ) >=
δ(τ ), D is the noise intensity, D = 10−3). Parameters are: ε = 0.01, a = 0.95 (self-
oscillatory regime), a = 1.05 (excitable regime). (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

modification of the Hindmarsh-Rose neuron model [34]). If chang-
ing of the parameter a in the system (2) shifts the equilibrium 
point out of the negative dissipation area [grey areas in Fig. 1], 
then the steady state becomes stable and the system does not 
exhibit the self-oscillatory behaviour [Fig. 1 (b)]. However, in the 
presence of noise the force ξ(t) randomly kicks the phase point 
out of the vicinity of the stable equilibria towards the region of the 
negative friction γ (x). Phase point drift is amplified in the areas 
of negative dissipation. If energy pumping is sufficient, the phase 
point trajectory forms a loop [the green trajectory in Fig. 1 (b)]. 
Thus, both self-oscillation excitation and excitability are associated 
with the presence of negative dissipation1 in the context of motion 
of a particle in a potential field.

The presented above interpretation of the self-oscillatory dy-
namics in terms of motion of a particle in a potential field in-
volves the presence of a potential with a fixed profile and state-
dependent dissipation, which possesses negative and positive val-
ues and is responsible for the existence of the self-sustained os-
cillations. Another configuration of self-oscillatory motion in the 
potential field is proposed in the paper [35]. It implies positive dis-
sipation factor and a state-dependent potential, which is respon-
sible for self-oscillation excitation. In that case both steady state 
instability and amplitude limitation are dictated by the potential 
function. This configuration corresponds to mutual interaction of 
the point mass particle and the potential field. The potential de-
termines the particle’s dynamics, but it changes depending on the 
velocity of the mass point. The publication [35] is focused on the 
dynamics of deterministic systems and does not involve study of 
the stochastic behaviour. The next step, which allows to expand 
a manifold of possible phenomena in the state-dependent poten-
tial well under condition of positive dissipation, is consideration of 
noise-induced effects. In particular, the effect of coherence reso-
nance can be explored.

In the current paper we propose an excitable oscillator being 
similar to the model offered in the paper [35]. The dynamics of 
the system under study can be interpreted as motion of a parti-

1 It is important to note that the definition “positive” or “negative dissipation” 
determined by the sign of the term γ in the oscillatory forms (1) and (3) is correct 
only in terms of description of the dynamics as motion of a particle in a potential 
field. Generally, dissipativity of dynamical systems is determined by the divergence 
of the phase space flow.

cle in a state-dependent potential well in the presence of positive 
dissipation. The explored system exhibits the effect of coherence 
resonance associated with the type-II excitability. In contrast to 
the system (2) and other systems the excitable dynamics of the 
system under study is fully defined by the nonlinearity of a poten-
tial function and does not result from properties of a dissipation 
function. Therefore, the observed behaviour can be interpreted as 
motion of a particle in an excitable potential well. In the present 
paper we demonstrate that the effect of coherence resonance can 
be achieved in the state-dependent potential well under condition 
of positive dissipation. By this way we complement the results of 
the paper [35].

The present paper is organized as follows. In the section 2 the 
studied system is described in details. Then the effect of coherence 
resonance is shown in the noise-driven system (section 3). Conclu-
sions are presented in the section 4.

2. Model and methods

Fig. 2 (a) shows a schematic circuit diagram, which mathemat-
ical model is derived below. It is a series-oscillatory LCR-circuit 
driven by a nonlinear feedback. The nonlinear feedback is realized 
by the nonlinear converter F . The converter F has two inputs V
(the voltage across the capacitor C ) and V R (the voltage across the 
resistor R) with zero input current. In that case the same current 
i passes through the inductor L, the resistor R , the capacitor C
and then V R = iR . The converter F has the output voltage as be-
ing: Vout = V g

(V −kV R )2+1
− Va + ξ(t) = V g

(V −mi)2+1
− Va + ξ(t), where 

m = kR , Va = const, V g = const, ξ(t) is the stochastic term deter-
mined by a broadband noise source included into the converter 
F . By using the Kirchhoff’s voltage law the following differential 
equations for the voltage V across the capacitor C can be derived:

C L
d2 V

dt′ 2
+ RC

dV

dt′ + V

= V g(
V − m dV

dt′
)2 + 1

− Va + ξ(t).
(4)

In the dimensionless form with variable x = V /v0 and time t =
t′/m, where v0 = 1 V, Eq. (4) can be re-written as,

εẍ + γ ẋ + x + a − g

(x − ẋ)2 + 1
= √

2Dn(t), (5)

where ẋ = dx
dt , ẍ = d2x

dt2 , parameters are ε = C L
m2 , γ = RC

m , a = Va/v0, 
g = V g/v2

0, n(t) is normalized Gaussian white noise (< n(t) >= 0, 
< n(t)n(t + τ ) >= δ(τ )), and D is the noise intensity. Numerical 
modelling of the system (5) was carried out by integration using 
the Heun method [36] with the time step �t = 0.001.

One can imagine mechanical realization of the system (5). One 
of the simplest mechanical oscillators is a spring-based pendulum 
[Fig. 2 (b)]. In a linear pendulum case a spring-suspended solid is 
affected by the force of gravity, �F1 = m�g , and the elastic force, �F2, 
being proportional to displacement �x from equilibrium: �F2 = −k�x. 
Taking into account the influence of air resistance assumed to be 
proportional to the velocity of motion �F3 = −γ �v , one can derive 
an equation of motion in the vectorial form (Newtown’s second 
law): m�a = �F1 + �F2 + �F3. Then the scalar form of the equation 
is: mẍ + γ ẋ + kx = 0. Generally, elastic properties of objects can 
be more complex (see for example a model of hair bundles with 
negative stiffness [37,38]). Moreover, the spring can be changed 
to a complex device [Fig. 2 (c)] including elastic medium (the 
medium S in Fig. 2 (c)) and a source of energy (is marked by 
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