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Based on a previously observed analogy between electromagnetic and non-inertial effects, we investigate 
the competition between magnetic field and rotation in the quantum motion of an electron constrained 
to the surface of a sphere. We solve numerically the Schrödinger equation of the problem for the energy 
eigenvalues and the eigenfunctions and compare the effects of the magnetic field and rotation. We obtain 
that, for a weak magnetic field, an electron can not distinguish between magnetic field and rotation, 
since they lead to equivalent behavior. But this is no longer true for strong magnetic fields. However, 
surprisingly, even though the rotation and magnetic fields play different roles in the electronic properties 
of the system, when together, each influence of the magnetic field on the energy levels can be separately 
balanced by rotation. We also show that no matter the intensity of the magnetic field, it is always 
possible to destroy the Landau levels in the sphere by rotation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The influence of electromagnetic fields on quantum particles is 
a well known subject, and has been investigated since the birth of 
modern quantum mechanics through the inclusion of a scalar and 
a vector potential in the Schrödinger equation, in the context of 
non-relativistic quantum mechanics [1,2], or in the Dirac equation, 
in the context of relativistic quantum mechanics [3,4]. In a seminal 
work, Aharonov and Bohm proposed a new significance to the vec-
tor potential [5], opening several possibilities to the study of the 
influence of electromagnetic potentials on the quantum regime, 
even if the fields are not present. This is the Aharonov–Bohm ef-
fect, that can occur both in scattering and in bound states as well 
[6,7]. It was first obtained by Landau, for the case of Schrödinger 
equation, that electrons in two dimensions under a perpendicular 
magnetic field have a discrete energy spectrum, the so-called Lan-
dau levels [8]. These discrete levels are associated with a quantiza-
tion of the cyclotron orbits expected in the classical regime. Since 
then, the investigation of the Landau levels in different systems has 
attracted great deal of attention. This interest, for instance, is due 
to the fact that some effects induced by magnetic fields, such as 
magnetic quantum oscillations [9–11] and the quantum Hall effect 
[12], can be better understood in terms of the Landau levels. Lan-
dau quantization in curved surfaces is also a topic of great research 
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interest, as can be seen for example in Refs. [13–15]. In particular, 
the investigation of the Landau levels on a spherical surface was 
already addressed in different systems [16–19].

Various works have suggested an analogy between rotation 
and electromagnetic fields, since the inertial forces enter the 
Schrödinger Hamiltonian as a vector and a scalar potential, as do 
the electromagnetic potentials. For instance, Aharonov and Carmi 
proposed an inertial effect analogous to the Aharonov–Bohm (AB) 
effect [20,21]. They showed that the inertial vector potential can 
create a phase in the quantum states of charged particles, simi-
lar to the AB case. This effect was studied for valence electrons 
in rotating C60 molecules [22]. It is known that such molecules 
can rotate with frequencies around 1011 Hz [23]. Also, a Hall-
like effect induced by rotation was investigated in Ref. [24]. The 
effects of rotation in Bose–Einstein Condensates (BEC) are ana-
lyzed in Refs. [25,26]. In this context, it is shown that the rotation 
can behaves like an effective magnetic field, providing conditions 
to phase transitions, for example. An experimental realization of 
a rotating BEC is described in Ref. [27]. In [28], the stability of 
stationary states in rotating nanostructures was studied, and the 
conditions for experimental verifications are discussed. In Ref. [29], 
rotational effects in the context of quantum interference were re-
ported. The influence of rotation was also analyzed in the elec-
tronic structure of carbon nanomaterials, such as fullerene [30,31]
and carbon nanotubes [32], where it was obtained that the spin-
rotation coupling works like the Zeeman interaction, breaking the 
spin degeneracy, which suggest the possibility of inducing the spin 
Hall effect in graphene [33] by rotation. The experimental realiza-
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tion of rotating carbon nanotubes obtained from circularly polar-
ized light is addressed in Refs. [34,35].

In this paper, motivated by this analogy, we investigate the 
interplay of magnetic field and rotation effects on the quantum 
motion of an electron constrained to the surface of a conduct-
ing sphere, a spherical shell quantum dot. We write out the 
Schrödinger equation for the problem and solve it for the energy 
eigenvalues and eigenfunctions. In order to understand the influ-
ence of the magnetic field and rotation individually, we first con-
sider each one separately and subsequently solve the general case. 
The differences and similarities between rotation and magnetic 
field are then discussed. We verify that, for a weak magnetic field, 
the rotation is equivalent to the magnetic field in the electrons 
point of view. However, for a strong magnetic field, this equiva-
lence is lost. We also obtain that, independently of the intensity of 
the magnetic field, the Landau levels can always be destroyed by 
suitably tuning rotation.

The paper is organized as follows. In Section 2 we write out 
the Hamiltonian for an electron constrained to the surface of a ro-
tating sphere in the presence of a magnetic field, obtaining the 
Schrödinger equation of the problem. In Section 3 we solve the 
Schrödinger equation, obtaining the eigenvalues and eigenfunc-
tions for three cases. We first analyze the effects of the rotation 
and magnetic filed individually, and then solve the general case 
where both are considered. In Sec. 4 we obtain the semi-classical 
orbits in order to have a better understanding of the influence of 
the rotation and magnetic field in the dynamics of a charged par-
ticle constrained to move on the surface of a sphere. The paper is 
summarized and concluded in Section 5.

2. Electrons in a rotating sphere in the presence of a magnetic 
field

The inertial forces, Coriolis and centrifugal, are given, respec-
tively, by

�FCor = 2μ(�v × �ω) (1)

and

�FCen = μ( �ω ×�r) × �ω, (2)

where μ is the effective mass and �ω is the angular velocity. Sim-
ilarly to the electromagnetic forces, these inertial forces enter the 
Schrödinger Hamiltonian as a vector and a scalar potential, respec-
tively. The Hamiltonian is given by

H = 1

2μ
(�p − 2μ�Aine)

2 + μV ine, (3)

where

�Aine = 1

2
( �ω ×�r) (4)

and

V ine = −1

2
( �ω ×�r)2. (5)

Thus, the Hamiltonian for a point charge subjected to a magnetic 
field in a rotating reference frame is given by

H = 1

2μ
[�p + e �A − μ( �ω ×�r)]2 − μ( �ω ×�r)2

2
(6)

= 1

2μ
[�p + e �A]2 − �ω · [�r × (�p + e �A)] , (7)

where �A is the electromagnetic vector potential.

Even though the rotation can enter the Hamiltonian as a vec-
tor and scalar potentials, there is no gauge choice for the inertial 
vector potential (4) since it is not a gauge field. One can also note 
that the last term in Hamiltonian (7) does not breaks the gauge 
symmetry, since the transformation �A → �A − �∇λ(�r), where λ is a 
scalar function of the coordinates, adds only a phase to the wave-
function. So, in order to have a more clear comparison between 
the effects of the rotation and the magnetic field, we use the sym-
metric gauge, given by

�A = 1

2
(�B ×�r), (8)

where �B is the magnetic field.
It is important to mention that earlier studies of quantum par-

ticles constrained to move on a curved surface [36,37] revealed the 
appearance of a geometrical potential given by

V g = − h̄2

2m
(M2 − K ) = − h̄2

8m
(k1 − k2)

2, (9)

where M and K are the mean and Gaussian curvatures, respec-
tively, and k1 and k2 are the principal curvature of the surface. 
Since the two principal curvatures in the sphere are equal, in our 
case this potential vanishes.

We consider that the charged particle is constrained to the sur-
face of a sphere of radius R under the action of both a uniform 
magnetic field and a uniform rotation with corresponding axes in 
the z direction, so that �B = Bẑ and �ω = ωẑ.

In spherical coordinates we have that

�B = B(cos θ r̂ − sin θθ̂). (10)

Thus, the electromagnetic vector potential can be chosen to be

�A = R B sin θ

2
φ̂. (11)

The Hamiltonian becomes then

H = p2

2μ
− αR sin θ pφ + β sin2 θ, (12)

where

α = − eB

2μ
+ ω (13)

and

β = eR2 B

2

(
eB

4μ
− ω

)
. (14)

The Schrödinger equation is therefore given by

− h̄2

2μ
∇2ψ + ih̄α

∂ψ

∂φ
+ β sin2 θψ = Eψ. (15)

With the ansatz ψ = um(θ)eimφ , Eq. (15) becomes

u′′
m + cot θu′

m +
(

E + α′h̄m − β ′ sin2 θ − m2

sin2 θ

)
um = 0, (16)

where m = 0, ±1, ±2, ±3, ... and

E = 2μR2

h̄2
E, α′ = 2μR2

h̄2
α, β ′ = 2μR2

h̄2
β.

Using the substitution x = cos θ , the above equation becomes[
d

dx
(1 − x2)

d

dx
+ E ′ + α′h̄m − β ′(1 − x2) − m2

1 − x2

]
um = 0.

(17)
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