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We propose a deformed version of the commutation rule introduced in 1967 by Buchdahl to describe a 
particular model of the truncated harmonic oscillator. The rule we consider is defined on a N-dimensional 
Hilbert space HN , and produces two biorthogonal bases of HN which are eigenstates of the Hamiltonians 
h = 1

2 (q2 + p2), and of its adjoint h†. Here q and p are non-Hermitian operators obeying [q, p] = i(1 −Nk), 
where k is a suitable orthogonal projection operator. These eigenstates are connected by ladder operators 
constructed out of q, p, q† and p†. Some examples are discussed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics is often thought to be naturally associated 
to self-adjoint (or Hermitian1) operators. In particular, the dynam-
ics is deduced out of a self-adjoint Hamiltonian, and the observ-
ables of the system are almost always assumed to be self-adjoint 
as well.

In recent years, mainly since the seminal work by Bender and 
Boettcher, [1], it was understood that self-adjointness is not an es-
sential requirement, since other operators exist, not self-adjoint, 
having purely real (and discrete) spectra. We refer to [2–4] for 
some reviews on this alternative approach. What is interesting, 
from a mathematical point of view, is that orthonormal (o.n.) bases 
of eigenstates are replaced by biorthonormal sets which can be, or 
not, bases of the Hilbert space where the physical system lives. 
Also, different scalar products can play a role, and this different 
products produce different adjoints of the same operators. More-
over, the role of pseudospectra in connection with unbounded 
operators becomes relevant, [5]. Then, in a sense, loosing self-
adjointness makes the mathematical structure reacher. Not only 
that: from a physical point of view the situation is also rather 
interesting since, for instance, some so-called PT-symmetric Hamil-
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tonians can be naturally used to describe quantum systems with 
gain and loss phenomena, see [6,7] and references therein.

In recent years, in connection with this kind of operators, we 
have developed a rather general formalism based on some suitable 
deformations of the canonical commutation and anti-commutation 
relations (CCR and CAR). These deformations produce what we 
have called D-pseudo bosons and pseudo-fermions. A rather com-
plete review on both these topics can be found in [8], to which we 
refer for several details and for some physical applications. Later 
on a similar framework was proposed for quons and for general-
ized Heisenberg algebra, [9,10].

Here we consider a deformation of a different commutation 
rule, originally considered in [11], and later analyzed in [12], in 
connection with a truncated version of the harmonic oscillator. The 
operator c considered in these papers obeys the following rule

[c, c†] = 1 − N K , (1.1)

in which N = 2, 3, 4, . . . is a fixed natural number, while K is a 
self-adjoint projection operator, K = K 2 = K †, satisfying the equal-
ity K c = 0. The presence of the term N K in (1.1) makes it possible 
to find a representation of K and c in terms of N × N matrices. 
In fact, in absence of this term we would recover the CCR, which 
does not admit any finite-dimensional representation. Here, on the 
other hand, K , c and c† act on a N-th dimensional Hilbert space, 
which we call HN . In [11] it was shown that the matrices for 
c and c† are essentially the truncated versions of the analogous, 
infinite-dimensional, matrices for the bosonic annihilation and cre-
ation operators. In [11] it was also discussed how to construct an 
orthonormal (o.n.) basis of eigenvectors of the self-adjoint operator 
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H0 = 1
2 (Q 2

0 + P 2
0), where Q 0 = c+c†√

2
and P0 = c−c†√

2 i
are the trun-

cated position and momentum operators. These vectors turn out to 
be eigenvectors of both H0 and K , and their explicit construction 
is strongly based on the fact that H0 is a positive operator, other 
than being self-adjoint. This automatically imposes a lower bound 
on the possible eigenvalues of H0, bound which was used in [11]
to construct the set of eigenvectors. We will see that, in our ex-
tended case, positivity is apparently lost, so that we cannot adopt 
the same construction as in [11] for the eigenvectors of our new 
Hamiltonian h, constructed in analogy with H0. Moreover, since 
h �= h†, it is natural to analyze also what happens for h†, and this 
will produce a biorthogonal set of eigenvectors of h†, see Section 3, 
which is a basis for HN .

The article is organized as follows: in the next section we dis-
cuss our deformed version of the commutation rule (1.1), and we 
construct a set of eigenvectors for the related truncated non self-
adjoint harmonic oscillator, with Hamiltonian h, see above. We 
call the operators a and b appearing in this deformation finite-
dimensional pseudo-bosons (FDPBs), since they can be seen as a 
truncated version of the D-PBs considered in [8]. We show ex-
plicitly how our construction works for some fixed values of N , 
and then we generalize the procedure to generic N . Incidentally 
we will find that the procedure proposed here is more explicit 
than that considered in [11]. In Section 3 the biorthogonal set of 
eigenvectors of h† is deduced. We also show how these FDPBs are 
related to the operators c and K in (1.1). In Section 4 we discuss 
two examples, while our conclusions are given in Section 5.

2. Deformed commutation rules

The main object of our research is the following deformed ver-
sion of the commutation rule (1.1):

[a,b] = 1 − Nk. (2.1)

Here N can be any fixed integer larger than 1, and k is an orthog-
onal projector: k = k2 = k†. Extending what is done in [11] we also 
require that ka = bk = 0. Moreover, a and b are not, in general, one 
the adjoint of the other: b �= a†. This is, in a sense, close to what 
was done in [13] first, and in [14] later, for CCR and CAR, and, in 
fact, what we will show here, is that we recover the same global
functional structure (raising and lowering relations, biorthogonal 
sets, non-Hermitian number-like operators, . . . ) as in the cited pa-
pers, even if we work here in finite-dimensional Hilbert spaces of 
dimension not necessarily equal to 2, as we did in [14].

The first remark is that operators obeying the commutation 
rule in (2.1) can also be represented as matrices acting on a 
N-dimensional Hilbert space HN . This can be easily seen as fol-
lows: let S0 be an (N − 1) × (N − 1) invertible matrix, and let s be 
a non-zero complex number. Then, if S is the diagonal block matrix 
with blocks S0 and s, S−1 exists (but, in general, S−1 �= S†) and, 
since (1.1) is implemented in HN , we can easily define three new 
matrices a = ScS−1, b = Sc† S−1 and k = S K S−1. These operators, 
since K commutes with S† S , satisfy (2.1), as well as the equali-
ties k = k2 = k† and ka = bk = 0. So we see that, at least in this 
situation, (2.1) can be represented in HN . Of course, other (higher-
dimensional) representations could also exist. However, from now 
on, a, b and k will be considered as operators on HN .

We start our analysis by introducing two (non-Hermitian) posi-
tion and momentum-like operators:

q = a + b√
2

, p = a − b√
2 i

,

so that a = q+ip√
2

and b = q−ip√
2

. As in [11], we introduce the opera-

tor h = 1
2 (p2 + q2). Despite of its expression, and of what happens 

in [11], h is not Hermitian (h �= h†). Moreover, it is not even man-
ifestly positive (h � 0), due to the fact that both q and p are not 
Hermitian. Nevertheless, we will show later in this section that the 
eigenvalues of h are indeed strictly positive for all possible choices 
of N . After few computations it is easy to deduce the following 
equalities:

[a,h] = a − 1

2
Nak, [b,h] = −b + 1

2
Nkb, (2.2)

as well as⎧⎨
⎩

h = ba + 1
2 (1 − Nk) = ab − 1

2 (1 − Nk),

{a,b} = 2h,

kh = hk = − 1
2 (1 − N)k,

(2.3)

which in particular imply that [h, k] = 0. Then we can look for 
common eigenstates of h and k, which we call ϕh′,k′ :{

hϕh′,k′ = h′ϕh′,k′ ,
kϕh′,k′ = k′ϕh′,k′ .

(2.4)

Of course, since k = k2, k′ can only be 0 and 1. In particular, 
in analogy with what happens in [11], the only (possibly) non 
zero vector ϕh′,k′ , when k′ = 1, is the vector with h′ = 1

2 (N − 1), 
ϕ 1

2 (N−1),1; all the other vectors, ϕh′,1, if h′ �= 1
2 (N − 1), turn out to 

be zero. In general, the vectors ϕh′,k′ are not mutually orthogonal 
in h′ , since h �= h†, while they are orthogonal in k′ , since k = k†:〈
ϕh′,k′ ,ϕh′′,k′′

〉 = 〈
ϕh′,k′ ,ϕh′′,k′

〉
δk′,k′′ . (2.5)

It is now possible to prove that, if a ϕh′,k′ �= 0, then this vector 
must be proportional to ϕh′−1+ 1

2 Nk′,0. This follows from the follow-

ing facts: first, since ka = 0, k(aϕh′,k′ ) = 0. Secondly, using (2.2), we 
have

h
(
aϕh′,k′

) = ([h,a] + ah)ϕh′,k′ =
(

h′ − 1 + 1

2
Nk′

)
(aϕh′,k′).

Hence our claim follows. In particular we have

aϕh′,0 = 0 ⇔ h′ = 1

2
. (2.6)

In fact, let us assume that ϕh′,0 �= 0 but aϕh′,0 = 0. Then, using 
(2.3), we have

0 = b
(
aϕh′,0

) =
(

h − 1

2
(1 − Nk)

)
ϕh′,0 =

(
h′ − 1

2

)
ϕh′,0,

so that h′ = 1
2 . The proof of the converse implication, i.e. that 

aϕ 1
2 ,0 = 0, needs to be postponed but it is essentially based on 

the fact that HN has dimension N . In fact, we will see that act-
ing with a and b on vectors of the form ϕh′,k′ we can produce N
linearly independent (l.i.) vectors, including ϕ 1

2 ,0. Their linear in-

dependence is due to the fact that they correspond to different, 
strictly positive, values of h′ (so, even if they are not orthogonal, 
they are still l.i.), or to different values of k′ (so they are orthogo-
nal and, therefore, l.i., too). Then, if aϕ 1

2 ,0 is different from zero, it 
would be proportional to ϕ− 1

2 ,0. This vector, being eigenstate of h
with eigenvalue h′ = − 1

2 different from the other ones (see below), 
would be the N +1-th l.i. vector in a space with dimension N . This 
is clearly impossible. Hence (2.6) follows. Notice that, in particular, 
this also implies that h admits only strictly positive eigenvalues, 
even in absence of an manifest positivity, which was used in [11]
to deduce the analogous of (2.6).

After showing that a annihilates ϕ 1
2 ,0, we need now to show 

that b annihilates the vector ϕ 1
2 (N−1),1:
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