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Sinoatrial node (SAN) is the leading pacemaker of the heart, whose pathologies are closely associated to 
certain kinds of arrhythmias. Phase-locking is a characteristic behavior of the self-oscillatory SAN system, 
which is relevant to the heart rate modulation. It is known that the SAN phase-locking properties are 
influenced by the stimulating magnitude, the stimulated site in the tissue, the intercellular coupling 
strength and even the couplings from the atrial cells. Besides the above knowledge, a practical problem 
remains undiscussed, i.e., the influences of the channel conductances and kinetics on the phase-locking 
property. In the present paper a detailed electrophysiological SAN model is investigated. The effects of 
several major parameters modulating the channels’ conductances and the time constants are illustrated. 
We find that the phase-locking ranges depend on the automaticity of the system. Any parameter variation 
slowing down the intrinsic oscillating rate may increase the phase-locking ranges, while that speeding up 
the rate may shrink them. The well known phase resetting property is applied to explain the phenomena, 
founding on which the analytical formulas for estimating the phase-locking ranges are derived.

© 2018 Published by Elsevier B.V.

1. Introduction

The sinoatrial node (SAN) is a piece of tissue embed in the 
right atrium. It consists of self-oscillatory cells, whose membrane 
voltages oscillate periodically with time. Because of coupling the 
membrane voltage pulses could propagate out to the atria and the 
ventricles, resulting in contraction of the whole heart. Thus the 
SAN is the leading pacemaker of the heart. In clinical studies it is 
known that some arrhythmogenesis are closely related to the SAN 
dynamics, e.g., the sick sinus syndrome, sinus node arrest, and the 
supraventricular tachycardia [1–4]. It is known that the SAN’s dy-
namics is modulated by various internal and external factors [5], 
so that the normal heart may adjust its rate to adapt to the body 
demanding. How the SAN system adjusts its beating rate in the 
presence of environmental changes is the central problem of the 
research on SAN dynamics.

In physical studies, an SAN cell is usually treated as a non-
linear oscillator, which could be described by a set of nonlinear 
ordinary differential equations [6–10]. For the nonlinear oscilla-
tors, the characteristic dynamical behavior is called phase-locking 
or entrainment, which means in the presence of external periodic 
stimulations the frequency of the oscillator may be locked on a 
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certain ratio to the stimulating frequency. Hence the phase-locking 
behavior could be regarded as one of the fundamental mechanisms 
for the modulation of the heart rate. The physical pictures uni-
versally occurring in the entrained systems is the so-called devil’s 
stairs and Arnol’d tongues, which reveals the fundamental char-
acteristics of the phase-locking behaviors [11]. For the periodically 
stimulated system, if one scans the stimulating period Tsti , a quan-
tity called rotation number will appear to be a function of Tsti

which looks like the stairs. The stairs have infinite self similarity 
and are thus called the devil’s stairs. The rotation number is de-
fined as

ρ = lim
M→∞

MTsti
∑M

i=1 Ti

, (1)

where Ti is the time span of the ith cycle of oscillation. Hence 
the rational ρ = M

N (we call it N:M phase-locking) means the en-
trained behavior is periodic, i.e., the time span of M times of oscil-
lation equals to N times of stimulation, and the irrational ρ means 
the behavior is quasi-periodic. As the stimulating magnitude is in-
creased, the appearance of the devil’s stairs would be varied. In the 
Tsti -magnitude plane the rational phase-locking regimes may look 
like some tongues growing from the bottom, which are called the 
Arnol’d tongues.

The phase-locking behaviors in biological oscillators have been 
well studied by the scholars such as Winfree, Glass, Keener, Gue-
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vara, Jalife and so on. The prior studies have revealed the univer-
sality of the phase-locking in kinds of in vitro cardiac cells and 
models [12–25,8,26–29], illustrated the phase-locking mechanism 
by the phase-resetting map (a circle map) [13–15,18–20,22,28,29], 
and applied the theories to explain the synchronization of the SAN 
tissue and the heart rate modulations [30,23,31,32,24,9,33]. In our 
previous works, we investigated in detail the phase-locking behav-
iors of a heterogeneous rabbit SAN model [34,35]. The characteris-
tics of the phase-locking in such a model influenced by the stimu-
lating magnitude, the stimulated site in the tissue, the intercellular 
coupling strength and the couplings from the atrial cells are re-
vealed, which may provide more complete and deeper knowledge 
for the SAN dynamics.

Besides the previous works, an interesting and practical prob-
lem remains undiscussed, i.e., the influences of the ionic chan-
nel parameters on the phase-locking behaviors of the SAN cells 
and tissue. It is well known physically the phase-locking prop-
erty closely depends on the stimulating magnitude exerted to the 
system. However, how the intrinsic dynamical parameters modu-
late the behavior, and the relevant physical mechanism are not 
clearly studied. The relationship between the intrinsic dynamics 
and the resulted phase-locking structure, and how to predict the 
phase-locking ranges are not yet known. In the present work, we 
numerically simulate an electrophysiologically modeled heteroge-
neous rabbit SAN model to investigate its phase-locking behaviors 
influenced by the ionic channel parameters. The channel conduc-
tances and time constants are varied to simulate the changes of 
the channels. The bifurcation analyses are carried out, founding on 
which the analytical formulas are proposed to estimate the ranges 
of specific phase-locking regions. Our work may provide common 
knowledge for interpreting and analyzing the fundamental phase-
locking characteristics of the nonlinear oscillators. Thus it is of 
interest of theoretical physics. On the other hand in the words of 
biological science, since it is physiologically and pharmacologically 
known that some drugs may influence the ionic channel conduc-
tances and kinetics [36], we believe our work may provide poten-
tially applicable treatments for specific SAN arrhythmias. Therefore, 
the present study may be both physically and physiologically rele-
vant.

2. Model an methods

The model used in the present paper is the revised version of 
Zhang et al.’s rabbit SAN model [34]. This model was developed 
founding on the in vitro experimental data from the rabbit heart. 
Its simulated electrophysiological properties agree with the known 
experimental results. Moreover, this model takes into account the 
heterogeneity of the cells from the central to peripheral region 
in the SAN tissue, which has been validated by experiments [37]. 
Hence the model is generic for the SAN type oscillators.

The differential equation governing the membrane voltage dy-
namics of a single cell reads:

dV

dt
= − Iion

Cm
+ Ist(t), (2)

where V is the membrane voltage, Cm is the membrane capaci-
tance, Ist is the external stimulus if applied, and Iion is the total 
transmembrane ionic current, which is a summary of thirteen cur-
rents:

Iion = INa + ICa,L + ICa,T + Ito + Isus + I K ,r +
I K ,s + I f + Ib,Na + Ib,Ca + Ib,K + INaCa + I p .

Each one of the thirteen currents can be expressed as

Iz = Gz fz(y, V )(V − Ez), (3)

where Gz is the conductance of the channel, Ez is the Nernst po-
tential, and f z(y, V ) is a function of V and y is a collection of the 
gating variables, i.e.,

y = (m,h1,h2, f L,dL, f T ,dT ,q, r, pa, f , pa,s, pi, xs, y).

For example, the L type calcium current is

ICaL = GCaL[ f LdL + 0.006

1 + e−(V +14.1)/6
](V − ECaL),

where f z(y, V ) = [ f LdL + 0.006
1+e−(V +14.1)/6 ] here. Each gating variable 

y (any element in y as indicated above) is governed by

dy

dt
= y∞(V ) − y

τy(V )
, (4)

where τy(V ) and y∞(V ) are the time constant and the steady 
state of y, respectively, which are functions of V . The details of 
the functions could be found in Refs. [10,34].

In respect of the tissue model, a 1D cable is simulated. The 1D 
heterogeneity is expressed by the spatial variations of the capac-
itance and ionic conductance from the center to periphery of the 
tissue, which is proposed by Zhang et al. [10]. On position x from 
the central end, the capacitance of the cell is

Cm(x) = 20 + 1.07x

L[1 + 0.7745e−(x−1.95)/0.295] (65 − 20), (5)

where L is the length of the cable. Thus on the central end (x = 0) 
the capacitance is 20 pF and on the peripheral end (x = L) it is 
approximately 65 pF. Then the conductance of a certain channel is

gz(x) = [65 − Cm(x)]gzc + [Cm(x) − 20]gzp

65 − 20
. (6)

gzc and gzp represent the conductances of the channel z on the 
central end and peripheral end, respectively. In the presence of 
such heterogeneity, the differential equation for the 1D cable reads 
[10]

∂V (x, t)

∂t
= − Iion + D∇2 V (x, t)

Cm(x)
+ Ist(x, t). (7)

The diffusion constant D is fixed as 0.002 cm2/ms unless specified 
otherwise, which is strong enough for the synchronization of the 
whole cable.

In the present model, six conductance parameters are explored, 
they are GCaL for the L type calcium current, GCaT for the T type 
calcium current, G K s for the slow rectified potassium current, G Kr

for the rapid rectified potassium current, Gto for the transient out-
ward potassium current and G f for the hyperpolarized activated 
current. These six currents are regarded as the major currents gen-
erally existing in the SAN cells. As for the time constants for the 
gating variables, τ f L for f L gate (the inactivation gate of the L type 
calcium channel) and τpa f for the fast component pa f of I Kr (the 
activation gate of I Kr ) are investigated since they have the most 
significant effects on the phase-locking structures in the time con-
stants, while the others have little effect. The reason for the choice 
of the time constants are in the supplementary information (SI), 
see Fig. S1 and the relevant discussion. In the present paper the 
six conductances mentioned above and the two time constants τ f L

and τpa f are our target parameters, which are varied to simulate 
the ionic channel variations. When a specific ionic channel is mod-
ulated, a factor α is multiplied to the conductance or the kinetics, 
i.e., Iz = αGz fz(y, V )(V − Ez) or dy

dt = y∞(V )−y
ατy(V )

. The control val-

ues of the target parameters are set as the published ones [10], 
detailed as follows:
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