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Destabilizing influence of plasma inhomogeneity on Alfvén eigenmodes in stellarators is considered. It is 
found that the diamagnetic frequency can strongly increase due to the resonance interaction of particles 
and Alfvén eigenmodes. This occurs when the particle resonance velocity exceeds the thermal velocity, 
in which case the role of superthermal particles enlarges. Then Alfvén eigenmodes can be destabilized 
even in the absence of the energetic ion population. It is shown that in the case of the temperature 
distribution with a large gradient at the periphery, the destabilized mode can channel the energy from 
the peripheral plasma region to the inner region. A stability analysis employing a model temperature 
profile of the ions was carried out for the Wendelstein 7-X stellarator. It indicates that the considered 
mechanism could lead to an Alfvén instability accompanied with the inward energy flux in the first W7-X 
experiments where long-lasting high-frequency oscillations were observed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The energy and momentum transfer across the magnetic field 
realized by the destabilized Alfvénic Eigenmodes (the phenomenon 
named the Spatial Channelling, SC) can be an important factor 
affecting the plasma performance [1]. Presumably, it was respon-
sible for the degradation of plasma heating by neutral beam in-
jection (NBI) in the NSTX spherical torus, by delivering a part of 
the NBI power from the plasma core to the periphery (an alter-
native explanation of the experiment was that the destabilized 
Alfvén eigenmodes strongly deteriorated the electron energy con-
finement [2]). It seems possible that the outward SC took place, 
although not identified, also in other experiments where degrada-
tion of the plasma heating was associated with the destabilization 
of Alfvén modes. On the other hand, if the SC were directed in-
wards, it would have a positive effect on the plasma energy bal-
ance. One can suppose that this took place in the first experiments 
on the Wendelstein 7-X stellarator: First, the ion temperature pro-
file, Ti(r), was rather flat in the plasma core but steep at the 
periphery [3–5]; second, long-lasting high frequency oscillations 
were observed, which were identified as an Ellipticity induced 
Alfvén Eigenmode (EAE) located in the region r/a � 0.5, with a
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the plasma radius [6]. Third, there was no energetic ion sources, 
and the ion heating was solely due to ion-electron collisions. These 
facts suggest that the inhomogeneity of the ion temperature at 
the periphery drove an Alfvén instability which adjusted the ion 
temperature profile in a way that a destabilizing effect of the pe-
ripheral region was compensated by the damping in the region 
where Ti(r) ≈ const.

The purposes of this work are to see whether Alfvén eigen-
modes can indeed be destabilized in a stellarator plasma with 
Maxwellian velocity distribution (usually Alfvén instabilities are 
driven by fast ions produced by NBI or other sources of plasma 
heating) and whether instabilities caused by the temperature gra-
dient can lead to the inward SC. In addition to a general analysis, 
a specific example relevant to the W7-X experiment described in 
reference [6] will be considered.

We will employ the fact that the so-called non-axisymmetric 
resonances arising because of the lack of axial symmetry in stel-
larators can provide the interaction of Alfvén modes and ions hav-
ing considerably smaller velocities than the resonance velocities in 
tokamaks [7]. Due to this, particles with E � Ti can interact with 
the modes.

Note that Alfvénic oscillations in the absence of energetic ions 
can be destabilized in tokamaks, too. In particular, low frequency 
instabilities (like Beta-induced Alfvén Eigenmodes, BAE) can be 
caused by the ion temperature gradient and the presence of mag-
netic islands [8,9], see also overview [10].
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2. Enhanced destabilization of Alfvén modes by the temperature 
gradient

In the absence of the energetic ions, the growth/damping rate 
of Alfvén instabilities can be described by

γ = 1

2W
Re

∫
d3x j̃kin⊥ · ∇⊥�̃, (1)
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σ ,⊥ is the transverse current, 
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A) is the mode energy, � is a scalar 
potential of the electromagnetic field, tilde labels perturbed quan-
tities, v A is Alfvén velocity, the subscripts e and i label electrons 
and ions, respectively. When the transverse current is associated 
with the particle drift in the equilibrium magnetic field and effects 
of the trapped particles are negligible, calculations lead to [7,11]
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where σ labels particle species, �mn and εμν are Fourier har-
monics defined by �̃ = ∑

m,n �m,n(r) exp(imϑ − inϕ − iωt) and 
B = B̄[1 + 0.5 

∑
μ,ν εμν exp(iμϑ − iνNϕ)], B̄ is the average mag-

netic field at the magnetic axis, the radial coordinate r is defined 
by ψ = B̄r2/2, ψ is the toroidal magnetic flux, ϑ and ϕ are the 
poloidal and toroidal Boozer angles, respectively, N is the number 
of periods of the equilibrium magnetic field, ε = r/R , nσ is the 
particle density, k̄res ≡ kres R = (m + μ)ι − (n + νN), ι is the ro-
tational transform of the field lines, R is the major radius of the 
torus, prime denotes the radial derivative, δ0 � 1 is determined by 
the plasma shaping [12], Q (u) is defined by∫
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where Fσ is the particle distribution function, uσ ≡ |vres‖ |/v Tσ , 
vres‖ = ω/kres , v T = √

2T /M is the particle thermal velocity, M is 
the particle mass, �̂ in the case of a plasma with isotropic velocity 
distribution is
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where ωB is the gyrofrequency. Due to (4), we can write Q =
Q v + Q r , where Q v and Q r are associated with the first term and 
second term in the RHS of equation (4), respectively.

It is clear that Q v < 0 for a plasma with Maxwellian veloc-
ity distribution, F M ∝ exp

{−(E‖ + E⊥)/T
}

, with E‖ and E⊥ the 
particle energy along and across the magnetic field. Therefore, an 
instability arises when Q r > |Q v |. The magnitude of Q r essentially 
depends on the resonance velocity. Because
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the ratio of the ∇Tσ term to the ∇nσ term grows when uσ in-
creases, at least for u2 ≥ 3/2. Therefore, one can expect that the 

Fig. 1. Functions Q v (u), Q T (u), and the enhancement factor K versus u ≡ |vres‖ |/v T .

condition Q r > |Q v | is satisfied most easily at large u. For this 
reason, we assume that u > 1. Then the integral over transverse 
velocities in (3) can be taken in the limits (0, ∞) because the re-
gion of trapped particles lies at E⊥ 
 Tσ when u > 1. As a result, 
we have:

Q v(u) = − 1

u
(2u4 + 2u2 + 1)e−u2

, (6)
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where ρσ = v Tσ /ωBσ and

Q T (u) = 1
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. (8)

We assume that Q r > 0 (otherwise plasma is stable), which im-
poses a restriction on the mode numbers, the resonance num-
bers (μ, ν), and radial derivatives of the plasma temperature and 
density. Then the ratio of the driving term to the stabilizing one is 
negative and given by
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where K ≡ Q T /|Q v | is the “enhancement factor”,

K = 2u6 + u4 + 2u2 + 1.5

2u4 + 2u2 + 1
. (10)

For instance, K(2) = 3.44, K(3) = 8.61. On the other hand, the 
function Q T (u) is decreasing rather weakly in the range 1 < u < 3, 
see Fig. 1. Therefore, this range of the resonance velocities may 
play the main role in instabilities.

Equations (6)–(10) remain valid during the instability provided 
that Coulomb collisions are strong enough to sustain Maxwellian 
velocity distribution.

3. Inward spatial channelling and its consequences

Let us assume that K 
 1 and the temperature gradient term in 
the ratio Q r/Q v dominates. Then K ≈ u2 ∝ 1/Tσ (for kres ≈ const 
within the mode width when the magnetic shear is not large), 
which leads to Q r/Q v ∝ T ′

σ /(rTσ ). It follows from here that the 
instability condition Q r/|Q v | > 1, with Q r > 0, is most easily sat-
isfied at the plasma periphery where the temperature is low. For 
instance, when Tσ = T0(1 − r2/a2)τ , Q r/Q v ∝ (1 − r2/a2)−1. It 
follows from here that it may happen that Q r/|Q v | < 1 in the 
region r1 < r < r0, but Q r/|Q v | > 1 in the region r0 < r < r2, 
where r0 is defined by equation Q r/|Q v | = 1, r1 < r < r2 is the 
region where the mode is located. The instability growth rate then 
is γ = γ+ − |γ−|, where γ+ > 0 and γ− < 0 are the drive and 
damping determined by equation (2) with the integral in numer-
ator taken in the limits (0, r0) and (r0, a), respectively. In a steady 
state γ+ = |γ−|, so that γ = 0.
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