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I obtain the quantum correction �V eff = (h̄2/8m)[(1 − 4ξ d+1
d )(S ′)2 + 2(1 − 4ξ)S ′′] that appears 

in the effective potential whenever a compact d-dimensional subspace (of volume ∝ exp[S(x)]) is 
discarded from the configuration space of a nonrelativistic particle of mass m and curvature coupling 
parameter ξ . This correction gives rise to a force −〈�V ′

eff〉 that pushes the expectation value 〈x〉
off its classical trajectory. Because �V eff does not depend on the details of the discarded subspace, 
these results constitute a generic model of the quantum effect of discarded variables with maximum 
entropy/information capacity S(x).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is often possible and desirable to ignore specific degrees of 
freedom of a system, and focus on those that remain. For exam-
ple, consider a nonrelativistic particle in a curved two-dimensional 
space

ds2 = dx2 + [b(x)]2dφ2, (x, φ) ∈R× [0,2π), (1)

as illustrated in Fig. 1. If the particle also encounters a potential 
V 0(x) then its action is

I[x(t),φ(t)] =
∫

dt
[m

2

(
ẋ2 + b2φ̇2

)
− V 0

]
, (2)

giving rise to the following equations of motion:

mẍ = mb′bφ̇2 − V ′
0, (3)

mb2φ̇ = pφ = const. (4)

Now suppose we only wish to describe the behaviour of the x co-
ordinate of this particle – perhaps φ is unobservable in practice, 
or happens to be irrelevant to whatever applications we have in 
mind. At the classical level, we can separate the x-motion from 
the φ-motion as follows. Let us write the action (2) as
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Fig. 1. As classical particles move over the curved space (1) their x coordinate can be 
predicted without reference to φ , using the reduced action (7). However, quantum 
particles encounter an addition potential �V eff due to variations in the physical size 
2πb of the discarded subspace φ ∈ [0, 2π).

I[x(t),φ(t)] =
∫

dt

[
m

2
ẋ2 + 1

2mb2

(
mb2φ̇ − pφ

)2

+ φ̇pφ − p2
φ

2mb2
− V 0

]
, (5)

and note that

δ

δx(t)

∫
dt

[
1

2mb2

(
mb2φ̇ − pφ

)2 + φ̇pφ

]

= − b′

mb3

(
mb2φ̇ − pφ

)2 + 2b′φ̇
b

(
mb2φ̇ − pφ

)
, (6)

which vanishes on the δ/δφ equation of motion (4). If we only 
want to determine x(t), we can therefore discard the second and 
third terms in (5) and work with the reduced action:
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I[x(t)] ≡
∫

dt
[m

2
ẋ2 − V cl

]
, (7)

where the (classical) effective potential is

V cl = V 0 + p2
φ

2mb2
. (8)

The reduced action (7) generates the correct equations of motion 
for x, consistent with substituting (4) into (3), and allows us to 
treat the particle as though it were living in a reduced configura-
tion space

ds2 = dx2, x ∈ R. (9)

We no longer need to refer to φ, and can think of pφ as a 
parameter of the system. For a concrete application of this for-
malism, recall Newtonian orbital mechanics: with b(x) = x, the 
metric (1) describes a flat plane with radial coordinate x, and 
V cl = V 0 + p2

φ/2mx2 is the standard centrifugal potential.
It is important to realise, however, that once quantum effects 

are considered, the above procedure is no longer valid. If we 
naïvely quantize the reduced system (7) we will not arrive at the 
correct result: that obtained by quantizing the original system (2)
and then reducing its configuration space. As we will see, the cor-
rect result differs from the naïve one by a quantum correction 
to the effective potential �V eff, dependent on the physical size 
Volφ = 2πb(x) of the discarded subspace Mφ

∼= [0, 2π).

2. Discarding a single variable

Let us work in the Schrödinger picture, and first confirm the ex-
istence of �V eff for the simple system above. As usual, we describe 
the quantum particle with a wavefunction, a scalar field �(x, φ, t)
that defines coordinate-invariant probabilities via integrals of the 
form

P =
∫

dx dφ
√

g|�|2, (10)

where 
√

g ≡ √
det(gij) is the covariant measure endowed by the 

metric gij . [(1) ⇒ √
g = b.] In curved space, � obeys the covariant 

Schrödinger equation1:

ih̄∂t� =
[

h̄2

2m

(
−∇2 + ξ R

)
+ V 0

]
�, (11)

where the Laplacian

∇2 = 1√
g
∂i

√
g gij∂ j (12)

and the Ricci scalar R ≡ Rij gi j ≡ Rk
ikj gi j are constructed from the 

metric gij .2 [(1) ⇒ R = −2b′′/b.] The form of (11) is fixed by co-
ordinate invariance, unitarity, locality, dimensional considerations, 
and the limits R → 0, V 0 → 0; however, the curvature coupling 
parameter ξ ∈ R is an arbitrary dimensionless constant, represent-
ing a quantization ambiguity of the system [1–3]. One can choose 

1 The first systematic treatment of quantum mechanics in curved space is due to 
DeWitt [1] whose paper includes a canonical derivation of the covariant Schrödinger 
equation. For another perspective on the origin and ambiguity of the curvature 
term, see [2]. A more modern approach can be found in [3].

2 The curved tube (1) is the entire configuration space of the system, so the co-
variant Schrödinger equation (11) can refer only to the intrinsic geometry of this 
manifold. Contrast this with a particle that actually exists in R3, but is constrained 
to a two-dimensional surface 	 ⊂ R

3 by a steep potential well: here, the extrinsic 
curvature of 	 will also play a role [4–8].

to invoke ‘minimal coupling’ ξ = 0, or motivate a conformal cou-
pling according to some other principle or consideration [9,10]. For 
the sake of generality, we leave ξ unspecified.

Having quantized the original system, we proceed to discard 
the φ subspace. In order to make pφ a parameter of the system, 
we must first insist that the particle be in an eigenstate of the 
angular momentum operator:

p̂φ� ≡ −ih̄∂φ� = pφ�. (13)

This requirement serves as the analogue of equation (4) and en-
sures that the particle’s φ behaviour is sufficiently simple that the 
x dynamics can be described in isolation. The states of interest are 
then

� = eikφ

√
2πb(x)

�x(x, t), pφ/h̄ = k ∈ Z, (14)

where the normalisation of �x ensures that probabilities (10) be-
come integrals of the form

P =
∫

dx|�x|2, (15)

without any reference to the φ subspace. Hence we can think of �x

as the wavefunction of the particle on the reduced configuration 
space (9).

To obtain the evolution equation for �x , we simply insert (14)
into (11). We arrive at a reduced Schrödinger equation

ih̄∂t�x =
[
− h̄2

2m
∂2

x + V qu

]
�x, (16)

where the quantum effective potential

V qu ≡ V cl + �V eff (17)

has an additional contribution

�V eff = h̄2

2m

[
−1

4

(
b′

b

)2

+ 1 − 4ξ

2

(
b′′

b

)]
, (18)

as promised. There are a few things to note about this quantum 
correction. First, this effect is not purely a consequence of spatial 
curvature: even for the flat case b = x we find �V eff �= 0. Second, 
�V eff cannot be made to vanish identically by some choice of ξ . 
Third, �V eff does not depend on pφ , so all states (14) experience 
the same correction.

To illustrate an important physical implication of �V eff , we now 
consider an arbitrary state:

� =
∞∑

k=−∞

eikφ

√
2πb(x)

�k
x(x, t), (19)

where 
∫

dx 
∑

k |�k
x|2 = 1 ensures proper normalisation. The expec-

tation value of a function f (x, pφ) is then

〈
f (x, pφ)

〉 ≡ ∫
dx dφ

√
g�∗ f (x,−ih̄∂φ)�

=
∫

dx
∞∑

k=−∞
|�k

x|2 f (x, h̄k). (20)

As each �k
x obeys the reduced Schrödinger equation (16) with 

pφ = h̄k, it follows that 〈x〉 evolves according to

m∂2
t 〈x〉 = −〈V ′

cl + �V ′
eff〉. (21)
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