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For one-dimensional systems with delta-contact interactions, the convergence of the exact-diagonalization 
method is tested with a basis of harmonic oscillator eigenfunctions with frequency � optimized through 
the minimization of the eigenenergy of the desired level. It is shown that within the framework of this 
approach the well-converged results can be achieved at much smaller dimensions of the Hamiltonian 
matrix than with the standard approach that uses � = 1. We present calculations for model systems 
of identical bosons with harmonic and double-well potentials. Our results show promising potential for 
diminishing the computational cost of numerical simulations of various systems of trapped ultracold 
atoms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, there has been an explosion of in-
terest in the properties of one-dimensional (1D) quantum gases 
with short-range interactions modelled by a Dirac δ-potential. 
With the emergence of new technologies and experimental tech-
niques, the properties of these systems, such as the number of 
particles, their interactions-, and the shape of the trapping po-
tentials, can be controlled with high accuracy [1,2]. As a result, 
it has become possible to simulate various physical phenomena in 
controllable ways that can even provide the opportunity to realize 
experimentally different toy models. Various physical realizations 
of systems of cold atoms are nowadays achieved [1–7]. In view of 
this tremendous technological progress, research activity has ex-
ploded in the area of investigating the many-body properties of 
various quantum composite cold-atom systems [8–18].

There are few 1D systems with contact interactions that can be 
solved analytically. The best known of these is the system com-
posed of two identical particles held together in a harmonic trap, 
which has closed-form solutions in the whole interacting regime 
[19]. The Bethe ansatz method is known to be a solution for the 
1D Bose gas in the absence of an external potential; that is, the 
so-called Lieb–Liniger model [20]. The most important result re-
garding the 1D gas is the famous Bose–Fermi mapping theorem 
[21] that maps the Tonks–Girardeau (TG) gas of bosons with in-
finitely strong repulsions to a free-fermion gas, which does not 
depend on the external potential. As a result, the theoretical study 
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of TG gases is a relatively easy task even in the limit of large 
particle numbers. The first observation of TG gases in experi-
ments [22] provided theoretical communities with the impetus to 
study the properties of TG gases under different external potentials 
[23–26]. The Bose–Fermi mapping theorem also provides a tool for 
studying properties of multicomponent mixtures of strongly in-
teracting gases [27–30]. It is worth pointing out that a powerful 
pair-correlated variational approach to studying the ground states 
of bosonic systems with a harmonic trap has been developed in 
[31] and subsequently extended to fermionic mixtures [32] and to 
bosonic systems with different interactions between the pairs of 
atoms [33]. This approach can also be extended to other mixtures 
of cold atoms, such as boson–fermion mixtures [27] and bosonic 
mixtures [34].

However, in most cases, full numerical calculations are required 
to describe the transition between the weakly and strongly corre-
lated regimes, and this is generally a cumbersome task. Numerical 
simulations of ultra-cold gases are often performed with the exact-
diagonalization (ED) method and in the framework of the multi-
configuration time-dependent Hartree method [35] that has been 
extended for bosons [36] and fermions [37], as well as for bosonic 
(fermionic) mixtures [38,39].

The standard ED method is based on the Rayleigh–Ritz proce-
dure and uses as a variational wave function a finite linear com-
bination of many-particle states of a proper symmetry under the 
exchange of particles, usually made up of solutions of the corre-
sponding one-particle system. In contrast to variational methods 
that use single-trial wave functions, which are usually specialized 
to treat only ground states of specific systems, the ED method en-
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ables precise determination of ground- and higher bound-states in 
a systematic way.

In particular, most of the studies available in the literature 
about 1D systems with harmonic trapping potentials x2/2 use the 
ED method with harmonic oscillator (HO) eigenfunctions:
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( √

�√
π2nn!

) 1
2

e− �x2
2 Hn

(√
�x

)
, (1)

with � = 1, where Hn is the nth order Hermite polynomial. How-
ever, this results in very poor convergence of the many-body eigen-
states as a function of the number of basis states [40]. In fact, 
even for systems with small particle numbers, huge numbers of 
many-particle functions are needed to describe strongly interact-
ing regime [13].

In this paper we show that the ED method with basis func-
tions given by (1) can be a very effective tool for studying various 
trapped systems with delta interactions, provided the parameter 
� is variationally optimized. The structure of this paper is as fol-
lows. Section 2 outlines the formalism of the optimized ED (OED) 
approach. Section 3 tests the convergence of the OED method for 
the examples of harmonic and double-well potentials. Specifically, 
a significant improvement in the convergence is demonstrated for 
the harmonic trapping potential compared to the case without 
optimization of � (� = 1). Finally, section 4 presents some con-
cluding remarks.

2. Optimized ED approach

Without loss of generality, we deal only with systems of identi-
cal bosons. We begin with the dimensionless Hamiltonian to deal 
with any confining potential:

Ĥ =
N∑

i=1

h0(xi) + g
∑
i< j

δ(xi − x j), (2)

where the strength of the interaction is governed by the coefficient 
g and h0 is the one-body Hamiltonian given by

h0(x) = −1

2

∂2

∂x2
+ V (x). (3)

The true N-particle bosonic wave function can be represented 
as a linear combination:

|�〉 =
∑
β

aβ |uβ〉. (4)

Here, |uβ 〉 denotes the permanents that are constructed from the 
one-particle basis (1), which in the occupation-number represen-
tation take the form

|uβ〉 = |n0,n1, ...〉�. (5)

This represents the fact that the one-particle state |i〉 is occu-
pied ni times, 

∑
i ni = N , and β labels the different distributions 

of the particles. A feature worth stressing here is that if the 
trapping potential V is symmetric in x, then the corresponding 
Hamiltonian (2) commutes with the symmetry operator P̂ de-
fined as P̂�(r) = �(−r), the eigenvalues of which are p = ±1, 
r = (x1, x2, ..., xN ). Consequently, the states with parities p = 1 and 
p = −1 are superpositions of even- and odd-parity permanents, ∑

i ini = (even or odd) respectively.
In practical calculations, we must truncate the many-particle 

basis. One reliable way of doing this is to use the basis made 
up of Fock states in the form |uK

β 〉 = |n0, n1, ..., nK , 0, 0...〉� , where 

Table 1
Applying Newton‘s method to the present problem yields the following recurrence 
equation for the term �n+1: �n+1 = �n − e(1)

n /e(2)
n , where e(1)

n and e(2)
n are finite 

difference approximations to first and second derivatives of E(K )
0 at � = �n , which 

are calculated here with a step length of d� = 0.005. The table presents the results 
of the first few Newton iterations {�n, E(K )

0 (�n)} obtained for the ground-state of 
the three-particle system with g = 10 at K = 35. In spite of the fact that the starting 
point differs considerably from an optimal solution, a fast convergence is observed.

�0 = 1 ... �5 ≈ 5.15 �6 ≈ 5.11 �7 ≈ 5.11

4.26943 ... 4.12803 4.12802 4.12802

∑K
i=0 ini < K [13,41–43]. From now on D denotes the number of 

many-body basis functions that compose the truncated basis set. 
Diagonalization of the corresponding truncated Hamiltonian matrix 
[Hαβ ], with Hαβ = 〈uK

α |Ĥ|uK
β 〉, thus yields a set of approximations 

to the energies, E(K )
i , and the corresponding eigenvectors a(K )

i :

|�〉i ≈
∑
β

(a(K )
i )β |uK

β 〉. (6)

By increasing K , approximations to a larger and larger number of 
states are obtained with systematically improved accuracy. How-
ever, the truncation of the basis set makes the approximate eigen-
states dependent on �. Only in the limit as K tends to infin-
ity does the dependency on � vanish altogether. This freedom 
in choosing the value of � can be used to improve the conver-
gence [44,45]. Following the principle of minimal sensitivity [46], 
the parameter � should be chosen so that the approximations to 
a given physical quantity are as minimally sensitive to its varia-
tions as possible. Clearly, the best approximation of the K th order 
to the energy of the desired state is obtained for the value of �
at which the corresponding eigenenergy E(K )

i attains its minimum, 
i.e., dE(K )

i /d�|�=�opt = 0. For large truncation orders, finding �opt
requires diagonalization of the truncated Hamiltonian matrix many 
times for different values of � until the minimum of E(K )

i is found. 
It is worth mentioning that various strategies for fixing the value 
of � before diagonalization of the Hamiltonian matrix have been 
tested on single-particle systems (see [47] and reference therein 
for an overview). However, none of these strategies guarantees that 
the desired state will be estimated with optimal accuracy.

Here, we concentrate on testing the effectiveness of the strat-
egy based on the minimization of E(K )

i . Although, strictly speaking, 
this approach yields the best approximation of the K th order only 
to the considered energy level, the corresponding resulting wave 
function is usually determined with an accuracy that is close to 
the optimal one.

3. Results

For testing the performance of the OED scheme, we first choose 
the ground states of particles subjected to a harmonic confining 
potential. Since the ground state is an even-parity state (p = 1), the 
dimensions of the Hamiltonian matrix can be reduced by includ-
ing in the calculations only the permanents that satisfy 

∑K
i=0 ini =

(even), which considerably diminishes the computational cost. In 
our calculations, the numerical minimization of E(K )

0 is done in the 
framework of Newton‘s iterative method for finding roots. To illus-
trate this clearly, we present in Table 1 an example of results of 
the first few iterations obtained in the N = 3 case.

Here, we take as the reference points the results obtained for 
three- and four-particle systems in [31], where these have been 
determined in different ways with satisfactory accuracies. In Fig. 1
we present the one-body densities

ρ(x) =
∫

�N−1

|�(x, x2, ..., xN )|2dx2...dxN , (7)



Download English Version:

https://daneshyari.com/en/article/8203032

Download Persian Version:

https://daneshyari.com/article/8203032

Daneshyari.com

https://daneshyari.com/en/article/8203032
https://daneshyari.com/article/8203032
https://daneshyari.com

