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In this paper we study the dynamics of a harmonic oscillator with laws of motion prescribed by MOND 
(Modified Newtonian Dynamics) in its modified inertia formulation. A differential equation for a 1D 
harmonic oscillator is obtained and several features of its solution are analyzed. Particular attention is 
given to the deep MOND limit regime, where the equations of motion are significantly different from the 
Newtonian one.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

MOND is a kind of dynamics proposed in the ’80s by Milgrom 
[1], [2]. This modification of Newtonian dynamics was proposed to 
fit galaxies rotation curves without using dark matter [3], [4].

A lot of work was done on dynamics of systems subjects to 
gravity like stars and galaxies [5], [6], [7]. The best prediction of 
MOND theory concern the physics of galaxies [8], for example the 
Tully–Fisher and Faber–Jackson relations are in good agreement 
with the MOND paradigm. On the other hand for cluster of galax-
ies MOND doesn’t explain completely the mass discrepancy.

MOND is fundamentally divided in two formulations: modified 
gravity (MG) and modified inertia (MI). Modified gravity involves 
only a modification of the gravitational potential, while modified 
inertia is a modification of all the forces. So in modified inertia 
systems subjects to any kind of forces have a modification of their 
dynamics. MOND was constructed to recover Newtonian dynam-
ics when a � a0 where a is the acceleration of the system and a0
a constant with the dimension of an acceleration. When a � a0
the system is in the so called deep MOND limit (DML). This indi-
cates that is the acceleration which discriminates between Newto-
nian and MOND dynamics. The commonly accepted value of a0 is 
a0 ≈ 1.2 × 10−10 m/s2 and has been obtained by a large amount of 
physical observations. The most complete and recent survey is [9].

In this paper we want to study a one dimensional harmonic 
oscillator with MOND dynamics. Obviously a harmonic oscillator is 
a system which is more reproducible in comparison to galaxy. So 
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if a modification of inertia is really necessary the dynamics of a 
harmonic oscillator could be a good benchmark.

The modified inertia paradigm is a modification of the Newto-
nian equation of the form:

�F = mμ

( |�a|
a0

)
�a (1)

where μ(x) is called interpolating function. This connects the 
Newtonian regime to the DML one, μ(x) is a continuous function. 
In order to do this interpolation the μ(x) has to satisfy the follow-
ing relation:

μ(x) =
{

1 if |x| � 1
x if |x| � 1.

(2)

Looking back to the (1) we have that for accelerations much 
larger than a0 the Newtonian dynamics is recovered. For accelera-
tions much smaller than a0 we get the DML. In this limit the force 
law (1), in one dimension, becomes:

F = m
a2

a0
sgn(a) (3)

where sgn is the sign function.
Actually a more general treatment of MI is based on a modifi-

cation of the kinetic part of the action Sk[�r(t), a0]. In this contest 
the kinetic action is a functional of the whole trajectory, and func-
tion of the constant a0. An action of this kind leads to different 
conserved quantities and adiabatic invariants with respect to MG 
formulation [7]. It is also possible to construct a theory in MI with-
out external field effect (EFE) [10]. We’ll talk more about EFE in the 
discussion of the results. Another fundamental property of such a 
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theory is the non locality in time (under the requirement of Galilei 
invariance) [11], [12].

2. Harmonic oscillator equation

For the harmonic force in 1-D we have:

Fh = −kx (4)

where k is a positive constant which is related to the angular ve-
locity ω of oscillation by the relation k = mω2.

For our purpose of calculation we use the force modification 
law prescription. So equating (1) and (4) we obtain the differential 
equation for the harmonic oscillator with modified inertia. For a 
more general treatment we define some new variables in order to 
have an adimensional equation. We define: y ≡ x

x0
where x0 is the 

maximal amplitude (initial deviation); τ ≡ ωt and ξ ≡ ω2x0
a0

. So the 
equation for the MOND harmonic oscillator reads:

μ(ξ | ÿ|) ÿ = −y. (5)

Equation (5) depends on the parameter ξ . Remembering that 
it is defined as ξ = ω2x0

a0
, it can be thought as a parameter which 

indicates the average acceleration of the system in units of a0. Us-
ing equation (3), we obtain the general equation for the harmonic 
oscillator in DML:

ξ ÿ2sgn( ÿ) = −y. (6)

2.1. More on deep MOND limit

Looking at equation (5), we note that it is the argument of the 
function μ the element which controls the regime of motion. If 
the argument is much greater than 1 then the equation becomes 
the same obtained with Newtonian law. While if the argument is 
much smaller than 1 the equation becomes the (6). Now we want 
to see when the DML occur. The arguments of μ in eq. (5) are ξ
and | ÿ|, so there can be two possibilities.

• ξ � 1, so the typical accelerations of the system are always 
lower than a0. Therefore the system is in the DML for all time 
and also | ÿ| is lower than 1.

• | ÿ| � 1 but ξ > 1. This situation occurs for every system, be-
cause there is always, though small, a range of space where 
the acceleration is lower than a0. This is easy to check: just 
look at the Newtonian equation for harmonic oscillator: ẍ =
ω2x. It’s trivial that for enough small x, the acceleration ẍ can 
be smaller than a0.

It can be demonstrated that in the DML there exist a whole 
family of solutions for the equation of motion [13]. This family of 
solution depends on the particular form of the potential. For the 
harmonic oscillator the family of solutions has the form:

yα = α4 y(τ/α) (7)

with α a real parameter.
Now we prove that (7) is actually a solution of equation (6). 

Let’s start by inserting the expression for yα in (6):

ξ

[
α4 d2

dτ 2
y
( τ

α

)]2

= −α4 y
( τ

α

)

ξ
[
α2 ÿ

( τ

α

)]2 = −α4 y
( τ

α

)
ξ α4 ÿ2

( τ

α

)
= −α4 y

( τ

α

)

⇒ ξ ÿ2
( τ

α

)
= −y

( τ

α

)
(8)

which is equal to (6). We have supposed sgn( ÿ) = 1, this does not 
affect the result. For gravitational potential the family of solutions 
in DML leads to scale invariance for velocity, in accordance with 
the constant velocity of stars at the edge of the galaxies (more 
properly when accelerations are lower than a0). This is not the case 
for the harmonic oscillator where velocity is not scale invariant as 
it can be seen easily from equation (7).

3. Analysis and manipulation of equations

Generally equation (5) can not be solved explicitly. The inter-
polating function makes the differential equation non linear unlike 
the Newtonian one that is linear. This non linearity leads to the 
following feature: if y and ỹ are solution of (5) then ˜̃y = y + ỹ is 
not solution. In other words we cannot superimpose two (or more) 
different solutions.

We will now look for solutions for the differential equation 
with initial conditions: y(0) = 1 and ẏ(0) = 0. The condition 
y(0) = 1 is automatically obtained remembering the definition of 
y: y = x/x0. In fact at the time t = 0, x is equal to x0, so y is equal 
to one. The second condition has been chosen for simplicity. The 
Newtonian equation for the harmonic oscillator reads:

ÿ = −y (9)

with solution:

y(τ ) = cos(τ ) (10)

To go further we have to choose a specific interpolating func-
tion. Two of the most used function are the simple interpolating 
function and standard interpolating function.

μ(x) = x

1 + x
simple interpolating function, (11)

μ(x) =
√

x2

1 + x2
standard interpolating function. (12)

Using these expressions we can find the associated differential 
equations. With the simple interpolating function (11) in equation 
(5) we get:

ξ ÿ2 sgn( ÿ)

1 + ξ | ÿ| + y = 0. (13)

While putting the standard interpolating function (12) in (5) we 
obtain:√

ξ2 ÿ2

1 + ξ2 ÿ2
ÿ + y = 0. (14)

Equation (13) is easier to handle. However (13) in that form is 
not useful. Let’s perform some steps to bring (13) in a more clear 
version. Note that sgn( ÿ) = −sgn(y), so (13) becomes:

−ξ ÿ2 sgn(y)

1 + ξ | ÿ| + y = 0. (15)

Now for y > 0 eq.(15) can be rewritten as:

−ξ ÿ2 − ξ ÿ y + y = 0. (16)

Basically we have to solve a second degree equation:

−ξx2 − ξx y + y = 0 (17)

where we have replaced ÿ with x. Eq. (17) has the two solutions:
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