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A relevant problem in the statistical and mathematical physics literature is to derive numerically accurate 
expressions to calculate Lévy α-stable distributions Pα(x; β). On the formal side, important exact results 
rely on special functions, such as Meijer-G , Fox-H and finite sums of hypergeometric functions, with 
only a few exceptional cases expressed in terms of elementary functions. Hence, from a more practical 
point of view, methods such as series expansions are in order, e.g., to allow for the estimation of 
the Lévy distribution with high numerical precision, even though most of the existing approaches are 
restricted to a subset of the distribution parameters and/or usually demand relatively time-consuming 
sophisticated algorithms. Here we present a rather simple truncated expansion for the case of symmetric 
Lévy distributions Pα(x) (β = 0). This is achieved by dividing the full range of integration into windows, 
performing proper series expansion inside each, and then calculating the integrals term by term. The 
obtained representation is convergent for any 0 < α ≤ 2. Moreover, its accuracy is directly controlled by 
the number of terms in the truncated expression, being straightforward to implement numerically. As we 
show with different examples, for almost all allowable α’s the calculations lead to Pα(x) with reasonable 
low absolute error for computationally inexpensive simulations.

© 2018 Published by Elsevier B.V.

1. Introduction

Stochastic analysis methods are useful to describe a large num-
ber of phenomena in natural and social systems, belonging to di-
verse areas, including physics, biology, economics, and sociology. 
A fundamental result in this context is the central limit theorem 
(CLT) [1–4]. The generalized CLT (GCLT), due to Paul Lévy and oth-
ers, has even broader implications, dealing with a whole family 
of stable distributions [5–9]. In the ‘classical’ case, a weak version 
of the CLT establishes that the sum of independent and identi-
cally distributed random variables of finite variance converges to a 
Gaussian distribution. The GCLT relaxes this condition of finite vari-
ance, but instead the sum converges to the so-called Lévy α-stable 
distribution, which is parameterized by the Lévy index 0 < α ≤ 2
[10–17].

E-mail addresses: nehwtoncrisanto@gmail.com (J.C. Crisanto-Neto), 
luz@fisica.ufpr.br (M.G.E. da Luz), ernesto@df.ufpe.br (E.P. Raposo), 
gandhi@dfte.ufrn.br (G.M. Viswanathan).

In the case of finite variance, the underlying dynamics is asso-
ciated with processes presenting normal diffusion, with Gaussian 
propagators and mean square displacement of the particles scal-
ing linearly with time. In contrast, a diverging variance is related 
to anomalous diffusion. In this case, the corresponding dynamics 
very often display long-range correlations, special kinds of disorder 
and randomness, and highly non-linear behavior. In this context, 
Lévy stable distributions have been used to model many-particle 
quantum problems [18], random lasers [19] and laser cooling [20], 
solid polymers [21], financial data [22], and distinct aspects of 
thermodynamics [23,24], to cite just few examples. It has also im-
portant links to areas such as fractional calculus, relevant in topics 
such as viscoelastic, anomalous diffusion, and heat transfer [25,
26].

We can represent all the possible stable distributions [1]
through a Fourier transform. The α-stable Lévy distribution has the 
probability density function f (x; α, β, μ, σ) given by

f (x;α,β,μ,σ ) = 1

2π

∞∫
−∞

dt exp[φ(t)] exp[−ixt], (1)
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where

φ(t) =

⎧⎪⎨
⎪⎩

itμ − |σ t|α
(

1 − i β sign[t] tan[π
2 α]

)
for α �= 1,

itμ − |σ t|
(

1 + i β 2
π sign[t] ln[|t|]

)
for α = 1.

Here μ, σ are reals and β ∈ [−1, 1]. The Lévy index α ∈ (0, 2] gov-
erns the asymptotic behavior of the distribution f (x; α, β, μ, σ) in 
the form of the power-law tail ∼ x−α−1. Hence, the Lévy index 
parametrizes the type of statistics related to the random variable. 
For example, when there are large (nonetheless uncorrelated) ve-
locity fluctuations with diverging second moments, the particle 
displacement is given by a Lévy stable distribution with 0 < α < 2. 
For α = 2, one recovers the Gaussian, since the second moment 
is finite and the usual CLT is valid. The other parameters de-
scribe the asymmetry or skewness β ∈ [−1, 1], the shift or location 
(μ ∈ (−∞, +∞)), and the scale (σ ∈ (0, ∞)).

Exact formal expressions for the Lévy α-stable distributions, 
Eq. (1), exist in terms of the involving Meijer-G and Fox-H func-
tions, which are generally expressed in the form of Mellin–Barnes 
integrals (see, e.g., [27–31]). But due to the practical importance 
of Lévy distributions in a huge diversity of phenomena and the 
fact that only in few cases (e.g., α = 1 and β = 0 Cauchy, and the 
boundary limit α = 2 Gaussian) Eq. (1) can be cast in terms of el-
ementary functions (simple to estimate), many efforts have been 
made to devise alternative protocols to calculate (either exactly or 
approximately) Eq. (1). In this way, some series expansions for the 
Lévy distribution have been proposed [32–35] (mainly in the sym-
metric β = 0 case). For instance, in a classical work, Bergström [34]
have addressed exact series representations for Lévy α-stable dis-
tributions, deriving two distinct convergent expressions: one, B1, 
for 0 < α < 1 (curiously, with B1 also leading to the correct 
asymptotical limit, |x| large, when 1 ≤ α < 2); and other, B2, for 
1 < α ≤ 2. As it concerns numerical applications, the most usually 
considered is B2 (see, e.g., [35]). Other approaches (relying on both 
special functions – as finite sums of hypergeometric functions – 
and expansions) [36–41] include expressions valid for particular 
cases of the distribution parameters, e.g., rational α’s.

In this contribution we propose a different approach to the 
problem. We deduce a unique (truncated) series expression for 
Lévy distributions valid for any 0 < α ≤ 2, yielding fairly good nu-
merical convergence. Also, our formula is easy to implement in any 
numerical coding platform. We concentrate on the important gen-
eral case of the symmetric (β = 0) Lévy α-stable distribution with 
0 < α ≤ 2.

This paper is organized as follows. In Section 2 we describe our 
method, which basically consists in splitting the full integration 
range into regular intervals (piecewise integration). In each interval 
(or window) we approximate the integrand by a proper expres-
sion allowing analytic integration. The final form for the symmetric 
Lévy α-stable distribution for any 0 < α ≤ 2 is hence a sum over 
all the (relevant) windows. Examples illustrating the good numer-
ical convergence are presented. Final remarks and conclusion are 
drawn in Section 3.

2. Method and results

We address the symmetric class of distributions, i.e., β = 0. 
In this case one can always perform for Eq. (1) the rescaling 
μ/σ → μ, x/σ → x, σ f → f , and the variable translation, x −
μ → x. Then, without loss of generality we likewise can set σ = 1
and μ = 0 in Eq. (1). From these considerations, f (x; α, 0, 0, 1) ≡
Pα(x) is readily written as a cosine Fourier transform (with 0 ≤
x < ∞ and assuming Pα(−x) = Pα(x))

Fig. 1. We divide the Fourier integral, Eq. (2), into non-overlapping windows for 
piecewise integration. The dashed lines indicate the edges of the windows.

Pα(x) = 1

π

∞∫
0

dt exp[−tα] cos[xt]. (2)

It is not difficult to show that Pα(x) is a monotonically decreasing 
function of x and that for x = 0, the above integral leads to the 
exact result (for �[·] the Gamma function)

Pα(0) = �[1/α]/(πα), (3)

with Pα(0) → ∞ for α → 0.
In trying to obtain an approximation expression for Pα(x), 

a first idea might be to expand the exponential in Eq. (2), so that 
terms of the form (t − t0)

m cos[xt] would be relatively straightfor-
ward to calculate. But then, the issue is to properly choose the 
number of series terms mmax = M and the expansion center t0, al-
lowing a reasonable good control of the numerical error regardless 
of the α and x considered. Certainly, a constant t0 for any x and α
would not be a convenient choice.

The hint to solve this problem is to subdivide the variable 
t full integration domain into intervals or ‘windows’. The first 
(interval 0) of length π/(2x) corresponds to the range 0 ≤ t <

π/(2x). The subsequent intervals, of length 2π/x each and la-
beled as In (for n = 1, 2, . . .), correspond to (π/2x)(4n − 3) ≤ t <

(π/2x)(4n + 1). We notice, in particular, that the cos[xt] function 
is odd about the center tn = (π/2x)(4n − 1) of the intervals In , 
furthermore vanishing at their extremes, see Fig. 1.

In this subdivision scheme is natural to treat the first interval 
separately from the others. Actually, as we are going to see below, 
Eq. (2) can be written as a sum of two convergent series, one solely 
for the interval 0 and the other for all the remaining In ’s. We shall 
leave to the end of this section, given x and α, a discussion about 
the numerical accuracy of the final (truncated) series for Pα(x) in 
terms of the number of terms used in the expansion.

We start by considering the first integration window, 0 ≤ t <

π/(2x), in Eq. (2). Let us define

gα(x) = 1

π

π
2x∫

0

dt exp[−tα] cos[xt], (4)

and make the substitution u = tα , to get

gα(x) = 1

απ

(
π
2x

)α∫
0

du exp[−u] cos[xu
1
α ] u

1
α −1. (5)
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