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Entanglement of quantum states is absolutely essential for modern quantum sciences and technologies. 
It is natural to extend the notion of entanglement to quantum observables dual to quantum states. For 
quantum states, various separability criteria have been proposed to determine whether a given state 
is entangled. In this Letter, we propose a separability criterion for specific quantum effects (binary 
observables) that can be regarded as a dual version of the Bell–Clauser–Horne–Shimony–Holt (Bell–CHSH) 
inequality for quantum states. The violation of the dual version of the Bell–CHSH inequality is confirmed 
by using IBM’s cloud quantum computer. As a consequence, the violation of our inequality rules out 
the maximal tensor product state space, that satisfies information causality and local tomography. As an 
application, we show that an entangled observable which violates our inequality is useful for quantum 
teleportation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

According to the axioms of quantum theory introduced by von 
Neumann [1], a quantum system is associated with a separable 
Hilbert space and a composite quantum system is given by a ten-
sor product of Hilbert spaces. In recent years, research to derive 
the axiom of Hilbert space from the physical or informational prin-
ciple has gained significant momentum [2–6]. Once the axiom of 
the local Hilbert space is derived, observable algebra (or positive 
operator valued measures as observables) and Born’s probability 
rule can immediately be derived. However, the composite system 
cannot be determined uniquely merely from the axiom of the lo-
cal Hilbert space, so its physical justification is desired. One of the 
keys to characterize the composite system is the entanglement of 
observables because it is not compatible with the maximal tensor 
product state space while it satisfies information causality [7] and 
local tomography [8].

In this work, we develop a separability criterion for a certain 
class of observables. For quantum states, several separability cri-
teria are already known, such as the positive partial transpose 
criterion [9,10], range criterion [11], reduction criterion [12,13], 
and entanglement witness [10] represented by the Bell–Clauser–
Horne–Shimony–Holt (Bell–CHSH) witness [14]. Conversely, only a 
few attempts have been done for observables [15,16]. Our main 
purpose is to establish the dual version of the Bell–CHSH in-
equality so that one can detect entanglement of observables from 
violations of the inequality. Such a violation is experimentally con-
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firmed by using IBM’s cloud quantum computer. As an application, 
we show that observables that violate our inequality are useful for 
quantum teleportation [17].

The outline of this Letter is as follows: We begin by introduc-
ing the three types of positivities and fixing notations in Sec. 2. 
Using these positivities, we discuss the state spaces of the compos-
ite systems. In this Letter, we assume that a local quantum system 
is given by a finite-dimensional Hilbert space H = Cd . In Sec. 3, 
we recall that some physical principles for the composite systems 
determine a family of possible state spaces that contains the min-
imal, maximal, and “physical” tensor products associated with the 
tensor product of Hilbert spaces CdAdB ∼= CdA ⊗CdB . While the vi-
olation of the Bell–CHSH inequality rules out the minimal one, it 
does not rule out the maximal one. To overcome this problem, 
we propose in Sec. 4 a dual version of the Bell–CHSH inequal-
ity that can be used to exclude the maximal one. This inequality 
can be violated by an entangled effect whose definition is explained 
below. In Sec. 5, we show experimentally by using a quantum com-
puter (IBM Quantum Experience) that an entangled effect violating 
this new inequality exists. Because the maximal composite system 
does not allow any entangled effect to exist, we exclude the max-
imal composite system from the possible candidates. In Sec. 6, we 
show that this violation is useful for quantum teleportation. Fi-
nally, some concluding comments are given in Sec. 7.

2. Three types of positivities

We introduce three positivities that are convenient for dis-
cussing the composite systems. An operator X on a Hilbert space 
H is positive, denoted by X ≥ 0, if 〈ψ | Xψ〉 ≥ 0 holds for all 
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|ψ〉 ∈ H. A bipartite operator X on a Hilbert space HA ⊗ HB

is positive on pure tensors (POPT) [18], denoted by X ≥POPT 0, if 
〈ψ ⊗ φ | Xψ ⊗ φ〉 ≥ 0 holds for all |ψ〉 ∈ HA and |φ〉 ∈ HB . POPT 
is also called block positive [19,20]. A non-positive POPT operator 
is called an “entanglement witness” [10]. A bipartite operator X
on a Hilbert space HA ⊗HB is separable positive and is denoted by 
X ≥SP 0 if X has a decomposition X = ∑

i Ai ⊗ Bi such that each 
Ai and Bi is a positive operator on HA and HB respectively. Since ∑

i Ai ⊗ Bi is a positive operator for positive operators Ai and Bi , 
X ≥SP 0 implies X ≥ 0. Since the positive operator is positive on 
pure tensors, X ≥ 0 implies X ≥POPT 0. However, the converses do 
not hold.

On the set of operators on a finite-dimensional Hilbert space, 
we introduce the Hilbert–Schmidt inner product as 〈A | B〉HS =
tr [A∗B]. The set of all positive operators is dual to itself via this 
inner product and the set of all POPT operators and the set of all 
separable positive operators are dual to each other.

3. No-signaling principle and local tomography

We assume that a local quantum system is associated with a 
finite-dimensional Hilbert space H = Cd . If an operator ρ is pos-
itive and its trace is equal to unity, the operator ρ is called a 
state, which represents an experimental situation. A state space 
S(H) is the set of all states { ρ ∈ T1(H) | ρ ≥ 0 }, where T1(H) is 
the set of trace class operators with unit trace. An effect space is 
a dual space to the state space S(H) and is defined as E(H) =
{ X ∈ B(H) | 0 ≤ X ≤ 1 }. An effect represents a measurement ap-
paratus that outputs “yes” or “no”. Therefore an effect can be 
identified with a binary observable. When the state ρ is prepared, 
the occurrence probability of a measurement event represented by 
E ∈ E(H) is given by the trace formula tr [ρE]. This trace formula 
is called the generalized Born rule. From the no-signaling principle 
and local tomography (the latter was introduced as the global state 
assumption in Ref. [8]), the state space of the two quantum sys-
tems is bounded [18,8,21,22] by the minimal tensor product state 
space and the maximal tensor product state space, which are de-
fined as follows: A minimal tensor product space is

S(CdA ) ⊗min S(CdB ) =
{

ρ ∈ T1(C
dAdB )

∣∣∣ ρ ≥SP 0
}

, (1)

and a maximal tensor product space is

S(CdA ) ⊗max S(CdB ) =
{

ρ ∈ T1(C
dAdB )

∣∣∣ ρ ≥POPT 0
}

. (2)

Note that the minimal tensor product space corresponds to the 
set of separable states. A state that is not a separable state is 
called an entangled state. An element of the maximal tensor prod-
uct state space is called a POPT state [18,23]. The state space 
given by the axiom of tensor product S(CdA ⊗CdB ) coincides with 
neither of them. That is, S(CdA ) ⊗min S(CdB ) � S(CdA ⊗ CdB ) �
S(CdA ) ⊗max S(CdB ) holds. Note also that this problem does not 
occur in classical theory. The tensor product of classical state 
spaces is unique [24].

The problem here is how we can distinguish S(CdA ⊗CdB ) ex-
perimentally from other state spaces. The left inequality is attained 
by the Bell’s argument [25]. Let B be

B = tr [ρ(A0 B0 + A0 B1 + A1 B0 − A1 B1)] , (3)

then the Bell–CHSH inequality [14] means |B| ≤ 2 for any sepa-
rable state ρ and operators Ai and Bi satisfying A2

i = B2
i = 1 and 

[Ai, B j] = 0. Conversely, there exists an entangled state ρ and pairs 
of incompatible measurements { A0, A1 } and { B0, B1 } that lead to 
the violation of the Bell–CHSH inequality [26]. The violation of the 
Bell–CHSH inequality thus implies the existence of an entangled 

state; namely, the state space of the composite system is strictly 
larger than S(CdA ) ⊗min S(CdB ).

4. Dual Bell–CHSH inequality

It is not a straightforward task to distinguish S(CdA ⊗CdB ) and 
S(CdA ) ⊗max S(CdB ) because there exists a quantum mechanical 
representation for POPT states [23]. The maximum value of the 
left-hand side (LHS) of the Bell–CHSH inequality in the maximal 
tensor product state space is 2

√
2, which coincides with that in 

S(CdA ⊗ CdB ). Furthermore, the information causality [7] is not 
strong enough to discard the maximal tensor product state space 
S(CdA ) ⊗maxS(CdB ). To overcome this problem, we use the duality 
between a state space and an effect space. We distinguish S(CdA ⊗
CdB ) and S(CdA ) ⊗max S(CdB ) by considering their effect spaces. 
The effect space dual to S(CdA ) ⊗max S(CdB ) is the set of separable 
effects E(CdA ) ⊗min E(CdB ) = {

X ∈ B(CdA ⊗CdB )
∣∣ 0 ≤SP X ≤SP 1

}
. 

An effect that is not a separable effect is called an entangled ef-
fect. We call observables that correspond to separable effect valued 
measures separable observables and observables that are not sepa-
rable entangled. In the case of a finite outcome, these definitions 
are consistent with entangled measurements in Ref. [15].

Let us consider a binary measurement that has two outcomes 
+1 and −1. Let M1, M−1 ∈ E(Cd) be POVM elements with out-
put +1 and −1 respectively. Let us write the Hermitian oper-
ator representing the expectation operator as M = M1 − M−1 =
2M1 − 1. We can safely identify this operator M with a binary 
observable { M1,M−1 }. Let αd be a constant d/(d − 1). We define 
the difference from ignorance by E(ρ, M) := αd tr [(ρ − 1/d)M] /2 =
αd tr [(ρ − 1/d)M1].

Lemma 1. Let X be an operator satisfying 0 ≤ X ≤ 1 and ρ be a state 
on a finite-dimensional Hilbert space Cd. The following inequality holds:

−1 ≤ αd tr

[(
ρ − 1

d

)
X

]
≤ 1.

Proof. Since ρ is self-adjoint, ρ is diagonalizable to ρ = UρD U †

such that ρD is a diagonal matrix and U is a unitary matrix. There-
fore,∣∣∣∣αd tr

[(
ρ − 1

d

)
X

]∣∣∣∣
=

∣∣∣∣∣∣∣αd tr

⎡
⎢⎣

⎛
⎜⎝

ρ11 − 1
d

. . .

ρdd − 1
d

⎞
⎟⎠ X ′

⎤
⎥⎦

∣∣∣∣∣∣∣ , (4)

where X ′ = U † XU . Since X ′ is also an effect,

=

∣∣∣∣∣∣∣αd tr

⎡
⎢⎣

⎛
⎜⎝

ρ11 − 1
d

. . .

ρdd − 1
d

⎞
⎟⎠ X ′

⎤
⎥⎦

∣∣∣∣∣∣∣
≤ αd

∑
i∈{ 1,...,d }
ρii−1/d>0

(
ρii − 1

d

)

≤ αd

(
1 − 1

d

)
= 1 (5)

holds. The last inequality follows from 
∑

i ρii = 1 and the fact that 
the LHS is greater if the number of the term −1/d is smaller. The 
last equality holds when state ρ is a pure state. �
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