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We show that using a slightly modified XX model for a spin-1/2 chain, one can transmit almost perfectly 
a maximally entangled two-qubit state from one end of the chain to the other one. This is accomplished 
without external fields or modulation of the coupling constants among the qubits. We also show that 
this strategy works for any size of the chain and is relatively robust to imperfections in the coupling 
constants among the qubits belonging to the chain. Actually, under certain scenarios of small disorder, 
we obtain better results than those predicted by the optimal ordered and noiseless case.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High fidelity transmissions of quantum states from one place 
to another are important ingredients needed in the implementa-
tion of several quantum information tasks [1]. Indeed, quantum 
communication protocols, and in particular quantum key distribu-
tion protocols [2], cannot work without a reliable transmission of a 
quantum state from one place (Alice) to another (Bob). Even a to-
be-built quantum computer will not work without a high fidelity 
quantum state transfer protocol within its hardware, since quan-
tum information must flow without much distortion among the 
many components of a quantum chip.

There are at least three ways by which quantum information, 
here a synonym to a quantum state, can be transmitted from Alice 
to Bob. The first one is the obvious direct transmission of the quan-
tum state, where the original physical system (a qubit, for simplic-
ity) encoding the quantum information is sent from Alice to Bob. 
This usually happens when the quantum information is encoded in 
the state of a photon, which is sent along an optical fiber from Al-
ice to Bob. The second way to transmit quantum information is via 
the quantum teleportation protocol [3], where a highly entangled 
state shared between Alice and Bob is the channel through which 
one is able to make a qubit with Bob be described by the state 
originally describing Alice’s qubit. A third possibility is to use spin 
chains connecting Alice and Bob as the channel through which the 
quantum state describing one end of the chain ends up after a cer-
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tain time describing the other end of it [4]. This is achieved by 
engineering the coupling constants among the qubits such that at 
time t > 0 Bob’s end of the chain is described by the state ini-
tially describing Alice’s end at time t = 0. In this last strategy, as 
well as in the quantum teleportation protocol, the physical system 
originally encoding the information is not sent from Alice to Bob, 
only the quantum state (quantum information) moves from Alice 
to Bob.

A main advantage of using the last strategy is related to the fact 
that once the coupling constants among the spins of the chain are 
set up to achieve a high fidelity transmission, we do not need to 
change them or switch them on and off. Such fixed arrangements 
can be very practical to allow the transmission of quantum states 
among the several components of a quantum computer, where it 
is not an easy task to constantly adjust the interaction strength 
among its qubits [4]. In addition to that, if the quantum chip 
is manufactured on a solid state system, it will be an advantage 
to have the communication channels connecting the several logic 
gates of the chip built on the same physical system. In this way 
there will be no need to sophisticated interfacing between differ-
ent physical systems as it happens, for example, when one uses 
photons to transmit the information and spins to process it [4].

So far the great majority of works dealing with quantum state 
transmission have either studied

(a) the transferring of a single excitation or an arbitrary qubit 
from Alice to Bob [4–8,11,13,15,17–21,23,24,26,27,29,30,32];

(b) the creation of a highly entangled state between Alice and Bob 
(the two ends or two specific sites of the chain) [4,11,14,17,20,
24,33];
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Fig. 1. Upper panel: Initially qubits A and 1 with Alice are prepared by her in the 
maximally entangled state |�+〉 = (|01〉 + |10〉)/√2 and all the other qubits are in 
the state |0〉. Our goal is to find the optimal constants J A , J̃ A , Jm , J B , J̃ B , and time 
t leading to the best pairwise entanglement transmission, i.e., we want the set of 
coupling constants and time t for which Bob’s two qubits N and B become most 
entangled. Lower panel: Initially qubits 1 and 2 with Alice are prepared by her in 
the maximally entangled state |�+〉 = (|01〉 + |10〉)/√2 and all the other qubits are 
in the state |0〉. Our goal is to find the optimal constants J A , Jm , J B , and time 
t leading to the best pairwise entanglement transmission, i.e., we want the set of 
coupling constants and time t for which Bob’s two qubits N −1 and N become most 
entangled.

(c) or the transferring of two (or more) excitations or two (or 
many)-qubit states from Alice to Bob [6,7,11,12,24,25,28].

In almost all these works the main focus was the study of a 
strictly one dimensional graph (spin chain-like systems), which we 
call the standard model (see the lower panel of Fig. 1). In the no-
tation of the lower panel of Fig. 1, task (a) is related to transferring 
the state describing qubit 1 to qubit N while task (b) consists in 
preparing qubits 1 and 2 in a highly entangled state and wait long 
enough to obtain qubits 1 and N in a highly entangled state. Task 
(c), on the other hand, aims at transferring, for instance, a quan-
tum state describing initially qubits 1 and 2 to qubits N −1 and N . 
See also Refs. [9,10,17,31] for chains built with continuous variable 
systems, i.e., systems described by pairs of canonically conjugated 
variables such as position and momentum.

In this work we are not interested in the sharing of entangle-
ment between Alice and Bob, as described in task (b) above, or the 
transfer of single qubit states, i.e., task (a). Our focus is on task (c), 
with the following two ingredients. First, we are not concerned 
in the transfer of arbitrary two-qubit states. We want to study 
the transfer of maximally entangled two-qubit states, namely, Bell 
states. In other words, our main goal here is to investigate the 
transmission of the pairwise entanglement between two qubits 
with Alice to two qubits with Bob. The two qubits with Alice are 
prepared in a maximally entangled Bell state at time t = 0 and our 
goal is to find the optimal coupling constants and time t leading to 
the greatest pairwise entanglement between two qubits with Bob 
(see Fig. 1). Second, and as depicted in the upper panel of Fig. 1, 
we work slightly beyond a one dimensional graph (spin chain). This 
geometry is crucial to have almost perfect transmission of a Bell 
state without a modulated chain [5,6,16] or external fields acting 
on the spins [12,22,24,28].

Indeed, as we show in the following sections, and much to our 
surprise, the standard model (lower panel of Fig. 1) gives very poor 
results in accomplishing this task for the simple unmodulated set-
tings of Fig. 1, specially for long chains. However, the slightly mod-
ified spin chain (strictly speaking a two dimensional graph) shown 
in the upper panel of Fig. 1 gives extraordinary results, leading 
to an almost perfect pairwise entanglement transmission for spin 
chains of any size. Also, when studying the robustness of the pro-
posed model, we observed that small disorder leads to a greater
efficiency in many situations, a counter-intuitive result.

We should also explicitly mention the interesting work of Chen 
et al. [30], where a similar geometry to that shown in the upper 
panel of Fig. 1 is employed to transfer a single excitation from 

qubit 1 to N (task (a)). In Ref. [30] it is shown that one must cou-
ple qubits A and B with qubits 3 and N − 2, respectively, instead 
of qubits 2 and N − 1 as in our model, in order to get an effi-
cient transfer. In Ref. [30] the authors set J A = Jm = J B = J and 
J̃ A = J̃ B = w and search for the optimal w/ J leading to the best 
single excitation transfer.

Before we get to Sec. 3, where a systematic and extensive com-
parative study is made between the pairwise entanglement trans-
mission efficiencies of the standard and proposed models, we give 
in Sec. 2 the mathematical formulation of the models studied here 
as well as other quantities and concepts needed to compute the 
efficiency of pairwise entanglement transmission. In Sec. 4 we test 
the proposed model against imperfections in its construction by 
studying how its efficiency is affected by static disorder. We show 
that for up to a moderately disordered system we obtain very good 
efficiencies and still outperform the standard model. For small dis-
order we can even get better results than those of the correspond-
ing clean system. For a comprehensive analysis of the influence 
of noise and disorder in the functioning of the standard model we 
recommend Refs. [6,34–47]. In Sec. 5 we analyze, for completeness, 
how efficient the proposed and the standard models are in the 
transmission of a single excitation. In this case, the standard model 
is the best choice. Finally, in Sec. 6 we give our final thoughts on 
the subject of this manuscript and also propose further lines of re-
search we believe might enhance our understanding of single state 
and pairwise entanglement transmissions along a spin chain under 
more realistic settings.

2. The mathematical tools

In Sec. 2.1 we give the Hamiltonian describing the systems de-
picted in Fig. 1 as well as how to efficiently solve numerically the 
Schrödinger equation that dictates their dynamics. In Sec. 2.2 we 
present the measure we employ to quantify the pairwise entan-
glement between two qubits and how we quantify the similarity 
between two quantum states.

2.1. The model and its time evolution

The Hamiltonian describing the proposed model is the isotropic 
XY model (XX model) with two extra qubits A and B coupled with 
qubits 2 and N − 1, respectively. We have a total of N + 2 qubits 
and the Hamiltonian reads

H = H A + H M + H B , (1)

where
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Here σα
i σα

j = σα
i ⊗ σα

j , with the superscript denoting a particular 
Pauli matrix and the subscript labeling the qubit acted by it. We 
also adopt the following convention usually employed in the quan-
tum information community: σ z|0〉 = |0〉, σ z|1〉 = −|1〉, σ x|0〉 =
|1〉, σ x|1〉 = |0〉, σ y |0〉 = i|1〉, σ y |1〉 = −i|0〉, where i is the imag-
inary unity and |0〉 and |1〉 are the eigenvectors of σ z . For those 
used to the up and down notation of the condensed matter physics 
community, the relation between the latter and the present nota-
tion is | ↑〉 = |0〉 and | ↓〉 = |1〉. Note that if we set J̃ A = J̃ B = 0 we 
get the Hamiltonian describing the standard model.

An important property of Hamiltonian (2) is that it commutes 
with the operator Z = σ z

A + ∑N
j=1 σ z

j + σ z
B , namely, [H, Z ] = 0. 
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