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Mechanical spectroscopy gives information on the structure of solids and their relaxation mechanisms 
through the measurements of the elastic constants and the mechanical loss angle of materials. One 
common way to estimate these quantities is the resonant method where the frequency and the 
characteristic decay time of oscillations are measured. Since many solid materials can be easily found in 
the shape of thin disc we have investigated the mechanical loss of these resonators and we have found 
experimentally that the loss angle dependence on the mode is not trivial but rather follow a distribution 
of modes into families. We give a model that is able to justify the existence of these families and to 
predict the level of losses in silicon, silica and brass discs. The model considers the thermoelastic effect 
and the excess damping caused by the condition of the disc edge. The results of this research are relevant 
to the research on thin films that are deposited on thin discs like the optical coatings used on the mirrors 
for the gravitational wave detectors.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The advent of transducers with increased sensitivity always has 
opened new frontiers of science and technology to mankind but 
also allowed studying fluctuations phenomena that were not ac-
cessible before. For example electronic amplifiers, that powered 
the telecommunications, opened the road to the investigation on 
fundamental electronic noises and, among them, the Johnson–
Nyquist noise in resistors. Since then, systems with small dissipa-
tion are the solution to the quest of low noise devices, mechanical 
as well as electrical.

In the last decades a large effort has been put in the develop-
ment of Gravitational Waves (GW) detectors. For such kilometre-
scale devices the fluctuations in the position of the reflecting sur-
face of mirrors, due to thermal noise in suspensions and in the 
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mirrors themselves, is one of the most important limitation in 
future developments of sensitivity. When the losses become ex-
tremely low, as in the case of the materials used in GW detec-
tors, their measurement becomes very challenging and a profound 
knowledge of various loss mechanisms becomes essential.

As explained by the Fluctuation–Dissipation Theorem [1] the 
level of thermal noise depends on the dissipative dynamics of the 
observable chosen for the description of the system. As observ-
able we choose the displacement �x of a point P of a system that 
it is composed by N interacting parts. Following the work of Yuri 
Levin [2], in order to work out the thermal noise level of x one 
has to imagine to force the system on the point P with a periodic 
force �F (ω) along the direction of �x and then calculate the dissi-
pated power. The single sided Power Spectral Density Sxx of the 
thermal noise associated to the displacement is then:

Sxx = 4 kB T

ω

1

Stf(ω)
· φTot(ω) (1)
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where kB is the Boltzmann constant, T the temperature, ω = 2π f
the angular frequency, Stf(ω) is the stiffness defined as the ratio 

between the moduli of the force 
√

�F (ω) · �F ∗(ω) and of the dis-

placement 
√�x(ω) · �x∗(ω) (∗denotes the complex conjugate), φTot is 

the loss angle of the entire system defined as φTot = Ed/(2π Et)

where Ed is the energy dissipated in one cycle and Et is the total 
energy of the system. We consider small dissipations so that the 
total energy does not change significantly in one cycle.

As we said the system is composed by N parts and the en-
ergy can be dissipated by different mechanisms. For each of them 
we assume that the energy lost in one cycle is proportional to 
some form of stored energy and each stored energy can be as-
sociated to a different loss mechanism. For example, the energy 
lost in structural relaxations is proportional to the total elastic 
energy. Differently, one can imagine that the bulk and shear defor-
mations are related each to different loss mechanisms. Moreover, 
viscous dissipation is proportional to the kinetic energy whereas 
thermoelastic loss is proportional to the energy stored in the vol-
ume change (therefore called here dilatation energy), as it will be 
shown in details in this work. Considering only a single part i we 
can express the energy lost in one cycle as a double sum, over the 
stored energy s = 1, 2, . . . and over the dissipation mechanisms m:

Ed,i = 2π ·
[

E1,i

∑
m

φm,i + E2,i

∑
m

φm,i + . . .

]

= 2π ·
∑

s

Es,i

∑
m

φm,i (2)

Replacing the previous equation into the definition of the total loss 
angle φTot we have:

φTot =
∑

i

∑
s

Ds,i(ω) ·
∑

m

φm,i(ω) (3)

where Di,s(ω), known as dilution factor, is the ratio between the 
stored energy Es in the part i and the total energy of the system 
Et , i.e. Ei,s/Et . For each part i a stored energy of type s appears 
only once and it may factorize several loss angles. Equation (3)
clarifies the important role of loss properties of materials to de-
scribe relaxation/dissipation processes.

In order to develop the next generation of gravitational wave 
detectors a novel measurement system for low loss materials has 
been developed. The mechanical losses can be measured with the 
resonant method [3] using disc resonators suspended on a sphere 
at the centre of their flat surface. This suspension is of the type 
nodal because several modes show one or more nodal lines pass-
ing in the centre of the disc surface. The system is called GeNS 
(for ‘Gentle Nodal Suspension’), and is described in Section 3. More 
details can be found in the work of E. Cesarini et al. [4]. The 
loss angle of the resonator φ is worked out from the character-
istic decay time τ of the excited mode through the simple relation 
φ−1 = π f τ where f is the resonance frequency. The single point 
suspension used in GeNS minimises the possible loss of energy 
coming from the mechanical coupling between the resonant modes 
and the environment: on a 3′′ diameter silicon wafer a loss angle 
as low as 4.7 × 10−9 has been measured [5] at cryogenic temper-
ature. Considering the ultra-low excess losses, the repeatability of 
measurements, the density of modes associated to a 2-D oscillator 
with respect to a 1-D system and the easiness to procure samples 
in the form of wafers we believe that the combination of GeNS and 
discs will be the standard protocol to characterize materials for fu-
ture GW detectors and in particular to characterize optical coatings 
deposited on discs.

For these composite resonators, made of the substrate D and 
coating C , the total loss angle is:

φTot =
∑

s

DD,s(ω) ·
∑

m

φD,m(ω)

+
∑

s

DC,s(ω) ·
∑

m

φC,m(ω) (4)

The calculation of coating losses φC,m(ω) for the different dis-
sipation mechanisms m requires knowledge about the losses of 
discs D and their dilution factors. For that reason an extended re-
search has been carried out on bare substrates showing that the 
disc losses have a non-trivial but reproducible dependence on the 
modes. These are grouped in families and these families are justi-
fied by the thermoelastic (TE) loss and the loss associated to the 
polishing condition of the disc edge.

2. Thermoelastic loss in cylinders

Under some particular conditions, often present in samples, the 
thermoelastic effect is the dominant source of mechanical energy 
loss at room temperature in the acoustic band. That is the case 
when the material has low intrinsic losses, relatively high thermal 
expansion coefficient and good thermal conductivity. In the follow-
ing the reason for this dominance of TE damping is explained as 
well as the role of the physical dimensions of the sample.

In a vibrating body, the thermoelastic process consists in the 
coupling of the elastic strain field with the local internal energy, 
resulting in heating of the compressed regions and cooling of the 
extended regions. Consequently, an irreversible heat flow is settled 
along the temperature gradient, resulting in the onset of energy 
damping. At frequencies much higher than the inverse of a typi-
cal heat diffusion time the vibration is adiabatic, while for lower 
frequencies a practically isothermal process is attained. However, 
when the period is close to the diffusion time, the resulting lack 
of thermal equilibrium makes the thermoelastic damping reach its 
maximum effect. Since the higher is the conductivity, the shorter 
is the diffusion time, the peak of dissipation strength reaches the 
audio band for good heat conductors.

Based on these considerations, the thermoelastic loss is ex-
pected to show a peaked dependency on frequency, and, as 
C. Zener showed in his seminal papers [6,7], to a very good ap-
proximation, the effect follows a Debye’s peak in vibrating reeds. 
This behaviour has been often taken as a reference plot even for 
bodies with aspect ratio and/or geometries significantly different 
from that of reeds, due to its simplicity and to the transparent re-
lationship with thermal and mechanical parameters. Nonetheless, 
this interpretation must be regarded as just a first approximation.

Since the cited papers from C. Zener, the methods to work out 
analytic expressions for the thermoelastic damping can be traced 
back to one of two main approaches:

• Dynamical approach [8]: the rate of energy dissipation is re-
lated to the phase lag between the stress and the correspond-
ing strain. Therefore, the quality factor only depends on the 
effective Young’s modulus in the dynamical equation. To take 
into account the thermoelastic process, the coupled thermal 
and mechanical equations must be solved with a proper set of 
boundary conditions. The modal eigenfrequencies ω will result 
to be complex, so that the quality factor will be computed as:

Q −1 = φ = 2
�(ω)

�(ω)
(5)

the factor 2 being due to the fact that the mechanical energy 
is proportional to the square of its amplitude.

• Rate of generation of heat: the entropy rise �S can be used 
to work out the amount of energy lost per cycle. Eventually, 
the latter is related to the temperature field T in the body 
through:
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