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We propose a universal method of computation of thermal noise in mirrors of gravitational wave 
interferometers based on first principles. We imagine a situation where a mirror is part of a Fabry–Perot 
cavity. The movement of the mirror’s surface produces variation of the eigen frequency of the cavity, 
which is computed by evaluating the variation of the energy stored in cavity. We consider two particular 
examples: first, the thermal noise from a dielectric slab inside the Fabry–Perot cavity, and second, the 
polarization-dependent thermal noise in the folded cavity.

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

1. Introduction

The direct detections of gravitational waves by LIGO detec-
tors [1,2] opened the era of gravitational wave astronomy. This 
groundbreaking discovery is a consequence of technology break-
throughs that allowed measurement of microscopic displacements 
of ∼ 10−18 m. Laser gravitational wave detectors based on the 
Michelson scheme have proven their potential to reach this accu-
racy by measuring tiny phase difference between the light beams 
in their two arms. Among them are LIGO [3], Virgo [4] and 
GEO 600 [5].

V.B. Braginsky was among the pioneers of thermal noise re-
search, who paid particular attention to the thermal noise origi-
nating from dissipation near the mirror surface and near the laser 
beam spot. It is this thermal noise that presents a severe limitation 
for the detector sensitivity in their most sensitive frequency band 
from 40 Hz to 2000 Hz [6–9]. In current detectors the most severe 
thermal noise is Brownian noise [10] in mirror coatings due to 
the high mechanical dissipation in the coating’ materials. The ther-
mally induced random stresses in the coatings and the substrates 
of the test masses lead to deformation of the mirror surfaces; 
it is these random deformations that are seen as thermal noise 
in the interferometer’ output. More specifically, a passing gravita-
tional wave produces change of an eigen frequency of the main 
mode in the arm cavity, which is registered by measuring a phase 
shift of a monochromatic optical wave reflected from the cavity. 
In turn, the thermal noise of the mirror’s surface also randomly 
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changes the eigen frequency of the same mode, which introduces 
noise to the GW signal.

In this paper we show how to compute a change in the optical 
mode frequency for an small deformation of the optical interfaces 
inside the cavity. Our approach together with the Fluctuation–
Dissipation Theorem (FDT) [11–13] allows one to compute the 
thermal noise in a variety of complex optical configurations.

This paper follows the following format: in Sec. 2 we formulate 
our approach and derive the key equations. In Sec. 2.1 we consider 
an example of a fluctuating dielectric surface inside Fabry–Perot 
(FP) cavity. In Sec. 3 we apply our approach for thermal fluc-
tuations of mirror’s surface in folded cavity where we take into 
account the light polarization; this is a generalization of results 
presented in [14] that did not account for polarization.

In parallel with this work, our approach has been used in [15]
for computing the thermal noise from a reflective grating (YL and 
SP are both co-authors on that work). In this paper we focus on 
the dielectric interfaces inside resonators and on the effect of po-
larization of the incident light.

We found out that similar approach was used in [16] to evalu-
ate the influence of an absorption layer on the resonant frequen-
cies and Q-factors of spherical microresonators.

2. Derivation of the readout variation

We begin by considering a simple FP cavity that is being res-
onantly pumped by external laser light. As a gravitational wave 
passes through the interferometer, it changes the physical length 
of the cavity. More specifically, in a transverse-traceless gauge and 
in a coordinate system with the input test mass as the origin, 
the tidal field of the gravity causes a displacement zh of the end 
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Fig. 1. FP cavity as meter of variation of eigen frequency of optical mode initiated by 
gravitational wave. The thermal noise produces perturbation uz of surface, changing 
eigen frequency and masking gravitational signal.

mirror. The displacement zh causes the frequency of the resonant 
optical mode to change linearly, changing by the amount �ω0. The 
phase of the wave that is reflected from the cavity, is in turn af-
fected by �ω0, and thus by monitoring the phase, one monitors 
the resonant mode frequency and zh . The change of frequency and 
the displacement are related by

�ω0

ω0
= zh

L
(2.1)

The thermal noise is produced by small random perturbations 
uz(�r) of the end mirror’s surface, here �r is marks the location of 
a point on the mirror surface — see Fig. 1. This perturbation, in 
turn, changes the eigen frequency ω0. We have to compute how 
the perturbation uz(�r) affects the eigen mode frequency.

The perturbation uz may have an arbitrary form, however, we 
assume that it is smaller than the wavelength of light, so that it 
impacts �ω0 linearly, and occurs on much longer time scale than 
the round-trip of the laser light inside the cavity, so that it does 
not create coupling with other optical modes and changes �ω0
adiabatically. The cavity is decoupled from the outside, and the 
light inside the cavity is concentrated in the mode ω0. The slow 
displacement uz will produce a change of optical energy E in the 
mode, and following adiabatic invariant should be conserved:

E
ω0

= const, ⇒ �ω0

ω0
= �E

E0
. (2.2)

We now give a simple argument of how to compute �E .
The physical reason of energy to vary is the work performed by 

the Lebedev’s light pressure p(�r⊥) acting normally on the mirror’s 
surface:

�E = −
∫

p(�r⊥) uz(�r⊥)d�r⊥ . (2.3)

In writing this we use the fact that the motion does not intro-
duce coupling into other modes, and therefore, all of the optical 
energy remains in the same mode. The light pressure pi acting on 
dielectric media surface (along outer i-th axis) may be calculated 
through the Maxwell stress tensor σi j in the media and outside 
[17]:

σε
i j = 1

4π

(
εEi E j + Hi H j − ε|E|2 + |H|2

2
δi j

)
. (2.4)

We emphasize that the light pressure is calculated for the unper-
turbed cavity.

For a diagonal component σzz the formula may be simplified:

σε
zz = ε

(
E2

z − E2
x − E2

y

) + H2
z − H2

x − H2
y

8π
. (2.5)

If we are interested in the light pressure acting on a dielec-
tric plate inside the cavity (for example, a beam splitter inside the 
power recycling cavity of LIGO interferometer), the normal pres-
sure is equal to the difference of normal stress tensor components 
inside and outside the dielectric:

Fig. 2. The incident waves with amplitudes B2 and A1 of electric fields falls on the 
boundary of dielectric media (permeability ε). Boundary is covered by coating with 
reflection coefficient R . We derive formulas for reflected and transmitted amplitudes 
of electric fields A2, B1.

pi = σ outer
ii − σ inside

ii (2.6)

Equations (2.2), (2.3), (2.5) give a direct recipe for computing 
the generalized displacement zeff , which defines variation of eigen 
frequency as in (2.1), using the field distribution in the unperturbed
cavity:

zeff =
∫

feff(�r⊥) uz(�r⊥)d�r⊥ , feff(�r⊥) = L

E
· pi(�r⊥) (2.7)

Now we can apply the FDT [11,12] in a formulation of [13]. Fol-
lowing the latter, we apply a virtual pressure pz oscillating at 
frequency ω to mirror surface:

pz(�r) = F0 sinωt feff(�r) (2.8)

and calculate the time-averaged dissipated power Wdiss . The one-
sided spectral density S(ω) of the fluctuations in the generalized 
coordinate zeff is equal to:

S(ω) = 8kB T Wdiss

ω2 F 2
0

(2.9)

2.1. The case of a dielectric boundary inside a Fabry–Perot cavity

As an illustrative auxiliary example, in this subsection we con-
sider a FP cavity with a dielectric media inside and show how a 
small perturbation of its surface changes the eigen frequency of 
the cavity. Let the permeability of the dielectric be ε , and assume 
that the magnetic permittivity is 1, so that the refractive index of 
the media is equal to n = √

ε . The surfaces of both mirrors are 
assumed to be fixed, while the surface of the dielectric media is 
perturbed by uz(�r⊥) — see Fig. 2. We assume that the free surface 
of the dielectric is covered by a reflecting coating with a reflectiv-
ity R .

We now recall that we have to compute the fields in an unper-
turbed cavity in order to find the optical pressure on the dielectric 
boundary.

First of all we derive the expressions for the amplitudes of re-
flected and transmitted waves for the scheme shown on Fig. 2. We 
must take into account that the fluxes corresponding to the waves 
are given by

W A1 = |A1|2
4π

c, W B1 = |B1|2
4π

c, in vacuum (2.10)

W A2 =
√

ε |A2|2
4π

c, W B2 =
√

ε |B2|2
4π

c, in media

Here Ai, Bi are the amplitudes of the electric fields and c is the 
speed of light in vacuum. We can write down the relations be-
tween the reflected and the transmitted waves (see notations on 
Fig. 2):
√

n A2 = T A1 + R
√

n B2, (2.11a)

B1 = T
√

n B2 − R A1, R2 + T 2 = 1 (2.11b)
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