and equations of motion
$\dot{I}_{1,2}=0, \quad \dot{\omega}_{1,2}=\frac{\partial H}{\partial I_{1,2}}=1, \quad$ with $\quad H=I_{1}+I_{2}$.
For the completely integrable system the Liouville-Arnold theorem implies that almost all points of the phase space are covered by a system of open toroidal domains with the action-angle coordinates $I_{1}, \ldots, I_{n} ; \omega_{1}, \ldots, \omega_{n}$. In these coordinates the completely integrable system has the form
$\dot{I}_{k}=0, \quad \dot{\omega}_{k}=\frac{\partial H}{\partial I_{k}}, \quad k=1, \ldots, n$,
and symplectic structure is canonical $\Omega=\sum d I_{k} \wedge d \omega_{k}$ [2].
The variables $I_{1,2}$ and $\omega_{1,2}$ (2.5) satisfy standard equations of motion (2.6) and have canonical Poisson structure $P=\Omega^{-1}$. So, we will call them the formal action-angle variables which are welldefined functions on the original Cartesian variables only in some part of the cotangent bundle to plane.

By definition Hamiltonian H (1.1) is in the involution with action variables $I_{1,2}$ and with any function on the difference of the angle variables
$X=F\left(I_{1}, I_{2}, \omega_{1}-\omega_{2}\right)$,
see discussion in [19-22]. Below we prove that X is the polynomial in momenta $p_{1,2}$ if $M_{1,2}$ belong to (1.2) or (1.3) because in this case $\omega_{1,2}$ are given by elementary functions. More general case when some function on difference $\omega_{1}-\omega_{2}$ are elementary functions on original variables we do not consider here, see discussion and examples in [7,19-22].

Let us recall that expressions of the form
$x^{m}\left(\alpha+\beta x^{n}\right)^{p} d x$,
where α, β are arbitrary coefficients and m, n, p are rational numbers, are called differential binomials. According to the Chebyshev theorem [4] integrals on differential binomials
$\int x^{m}\left(\alpha+\beta x^{n}\right)^{p} d x$,
can be evaluated in terms of elementary functions if and only if:

1. p is an integer, then we expand $\left(\alpha+\beta x^{n}\right)^{p}$ by the binomial formula in order to rewrite the integrand as a rational function of simple radicals $x^{j / k}$. Then we make a substitution $x=t^{r}$, where r is the largest of all denominators k, remove the radicals entirely and obtain integral on rational function.
2. $\frac{m+1}{n}$ is an integer, then we set $t=\alpha+\beta x^{n}$ to obtain integral

$$
\int x^{m}\left(\alpha+\beta x^{n}\right)^{p} d x=\frac{1}{2} \beta^{-\frac{m+1}{n}} \int t^{p}(t-\alpha)^{\frac{m+1}{n}-1} d t
$$

which belongs to Case 1.
3. $\frac{m+1}{n}+p$ is an integer, then we transform the integral by factoring out x^{n}

$$
\int x^{m}\left(\alpha+\beta x^{n}\right)^{p} d x=\int x^{m+n p}\left(\alpha x^{-n}+\beta\right)^{p} d x
$$

The result is a new integral of the differential binomial which belongs to Case 2.

In our case (2.5) we have
$\alpha=I_{1,2}, \quad \beta=1 \quad m=0, \quad n=M, \quad p=-1 / 2$.

Hence action variables ω_{1} and ω_{2} is expressed via elementary functions only if
$\frac{1}{M}$ is integer or $\quad \frac{1}{M}-\frac{1}{2}$ is integer.
In order to avoid logarithmic term $\ln (t)=\int t^{-1}$ in (2.5), which is also an elementary function, we have to consider only zero, positive and negative values of M, respectively.

For M_{k} from (1.2) action variables (2.5) are
$M_{k}=0, \quad \omega=\frac{2 q_{k}}{p_{k}}$,
$M_{k}=\frac{1}{n_{k}}>0, \quad \omega_{k}=$ polynomial of order $2 n_{k}-1$.
For M_{k} from (1.3) action variables (2.5) are
$M_{k}=0, \quad \omega=\frac{2 q_{k}}{p_{K}}$,
$M_{k}=-\frac{2}{2 n-1}<0, \quad \omega=\frac{\text { polynomial of order } 2 n_{k}-1}{I_{k}^{n_{k}}}$,
where $I_{k}, k=1,2$, is the corresponding action variable. Let us show a few explicit formulae for positive exponents
$M_{2}=1, \quad \omega_{2}=\frac{p_{2}}{b}$,
$M_{2}=\frac{1}{3}, \quad \omega_{2}=\frac{p_{2}\left(3 b^{2} q_{2}^{2 / 3}+4 b q_{2}^{1 / 3} p_{2}^{2}+8 / 5 p_{2}^{4}\right)}{b^{3}}$,
and negative exponents
$M_{2}=-\frac{2}{3}, \quad \omega_{2}=-\frac{p_{2}\left(3 b q_{2}^{1 / 3}+q_{2} p_{2}^{2}\right)}{2\left(p_{2}^{2}+b q_{2}^{-2 / 3}\right)^{2}}$,
$M_{2}=-\frac{2}{5}$,

$$
\omega_{2}=-\frac{p_{2}\left(5 b q_{2}^{1 / 5}+10 / 3 b q_{2}^{3 / 5} p_{2}^{2}+q_{2} p_{2}^{4}\right)}{2\left(p_{2}^{2}+b q_{2}^{-2 / 5}\right)^{3}}
$$

Other partial or generic expressions for integrals may be found in textbooks, tables of integrals or any computer algebra system.

Proposition 1. A Hamiltonian system defined by H (1.1) has a polynomial first integral X_{N} of order N, if M_{1} and M_{2} belong to (1.2) or (1.3):

1. if $M_{1}=1 / n_{1}$ and $M_{2}=1 / n_{2}$, then

$$
X_{2 n-1}=\omega_{1}-\omega_{2}, \quad \text { where } \quad n=\max \left(n_{1}, n_{2}\right)
$$

2. if $M_{1}=-2 /\left(2 n_{1}-1\right)$ and $M_{2}=-2 /\left(2 n_{2}-1\right)$, then

$$
X_{2 n-1}=\left(\omega_{1}-\omega_{2}\right) I_{1}^{n_{1}} I_{2}^{n_{2}}, \quad \text { where } \quad n=n_{1}+n_{2}
$$

3. if $M_{1}=1 / n_{1}$ and $M_{2}=-2 /\left(2 n_{2}-1\right)$, then

$$
X_{2 n-1}=\left(\omega_{1}-\omega_{2}\right) I_{2}^{n_{2}}, \quad \text { where } \quad n=n_{1}+n_{2}
$$

4. if $M_{1}=0$ and $M_{2}=1 / n$, then

$$
X_{2 n}=p_{1}\left(\omega_{1}-\omega_{2}\right), \quad \text { where } \quad p_{1}=\sqrt{I_{1}}
$$

5. if $M_{1}=0$ and $M_{2}=-2 /(2 n-1)$, then

$$
X_{2 n}=p_{1}\left(\omega_{1}-\omega_{2}\right) I_{2}^{n}, \quad \text { where } \quad p_{1}=\sqrt{I_{1}} .
$$

This integral of motion X_{N} is functionally independent from $I_{1,2}$ (2.5).

https://daneshyari.com/en/article/8203102

Download Persian Version:
https://daneshyari.com/article/8203102

Daneshyari.com

