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We continue the study of superintegrable systems of Thompson’s type separable in Cartesian coordinates. 
An additional integral of motion for these systems is the polynomial in momenta of N-th order 
which is a linear function of angle variables and the polynomial in action variables. Existence of such 
superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In 1984 Thompson proved superintegrability of the Hamiltonian

H = p2
x + p2

y + a(x − y)−
2

2n−1 , n ∈ Z+,

where n is an arbitrary positive integer [18]. To simplify the no-
tation it is best to make a 45 degree rotation q1 = x + y and 
q2 = x − y as in [11]. Such superintegrable systems are still be-
ing studied up till now, see [1,9,10,16] and references within.

In this note we prove that dynamical system with Hamiltonian

H = p2
1 + p2

2 + aqM1
1 + bqM2

2 , a,b ∈R, (1.1)

is superintegrable, if exponents M1 and M2 belong to the following 
sequence of positive rational numbers

M = 0,1,
1

2
,

1

3
,

1

4
, · · · ,

1

n
, n ∈ Z+, (1.2)

or sequence of negative rational numbers

M = 0,−2,−2

3
,−2

5
,−2

7
, · · · ,− 2

2n − 1
. (1.3)

These two sequences of exponents are distinguished according to 
the Chebyshev theorem on binomial differentials [4]. The corre-
sponding additional first integral is a polynomial with respect to 
momenta p1 and p2.

E-mail addresses: yury.grigoryev@gmail.com (Yu.A. Grigoriev), 
andrey.tsiganov@gmail.com (A.V. Tsiganov).

We also discuss nonseparable systems with Hamiltonians

H = p2
1 + p2

2 +
(

aqM1
1 + b

)
qM2

2 , (1.4)

where M1,2 belong to (1.2–1.3) and present a new integrable defor-
mation of the Fokas–Lagerstrom system [5,11]. The corresponding 
integral of motion is a polynomial in the momenta of the sixth 
degree.

2. Thompson’s type systems

There are many integrable and superintegrable systems with 
algebraic potentials, see [3,5,8,10–12,14,15,17,18]. For arbitrary ra-
tional M1,2 Hamiltonian H (1.1) is also an algebraic function well-
defined in some part of the plane. In the same domain of definition 
we introduce variables

I1 = p2
1 + aqM1

1 , I2 = p2
2 + bqM2

2 ,

ω1 = −
q1∫

dx√
p2

1 + aqM1
1 − axM1

,

ω2 = −
q2∫

dx√
p2

2 + bqM2
2 − bxM2

,

(2.5)

with canonical Poisson brackets

{ω j, Ik} = δ jk, {I j, Ik} = {ω j,ωk} = 0, j,k = 1,2,
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and equations of motion

İ1,2 = 0, ω̇1,2 = ∂ H

∂ I1,2
= 1, with H = I1 + I2.

For the completely integrable system the Liouville–Arnold theorem 
implies that almost all points of the phase space are covered by 
a system of open toroidal domains with the action–angle coor-
dinates I1, . . . , In; ω1, . . . , ωn . In these coordinates the completely 
integrable system has the form

İk = 0, ω̇k = ∂ H

∂ Ik
, k = 1, . . . ,n, (2.6)

and symplectic structure is canonical � = ∑
dIk ∧ dωk [2].

The variables I1,2 and ω1,2 (2.5) satisfy standard equations of 
motion (2.6) and have canonical Poisson structure P = �−1. So, we 
will call them the formal action–angle variables which are well-
defined functions on the original Cartesian variables only in some 
part of the cotangent bundle to plane.

By definition Hamiltonian H (1.1) is in the involution with ac-
tion variables I1,2 and with any function on the difference of the 
angle variables

X = F (I1, I2,ω1 − ω2),

see discussion in [19–22]. Below we prove that X is the polyno-
mial in momenta p1,2 if M1,2 belong to (1.2) or (1.3) because in 
this case ω1,2 are given by elementary functions. More general 
case when some function on difference ω1 − ω2 are elementary 
functions on original variables we do not consider here, see dis-
cussion and examples in [7,19–22].

Let us recall that expressions of the form

xm(α + βxn)pdx,

where α, β are arbitrary coefficients and m, n, p are rational num-
bers, are called differential binomials. According to the Chebyshev 
theorem [4] integrals on differential binomials∫

xm(α + βxn)pdx,

can be evaluated in terms of elementary functions if and only if:

1. p is an integer, then we expand (α + βxn)p by the binomial 
formula in order to rewrite the integrand as a rational function 
of simple radicals x j/k . Then we make a substitution x = tr , 
where r is the largest of all denominators k, remove the radi-
cals entirely and obtain integral on rational function.

2.
m + 1

n
is an integer, then we set t = α +βxn to obtain integral

∫
xm(α + βxn)pdx = 1

2
β− m+1

n

∫
t p(t − α)

m+1
n −1dt

which belongs to Case 1.

3.
m + 1

n
+ p is an integer, then we transform the integral by 

factoring out xn∫
xm(α + βxn)pdx =

∫
xm+np(αx−n + β)pdx.

The result is a new integral of the differential binomial which 
belongs to Case 2.

In our case (2.5) we have

α = I1,2, β = 1 m = 0, n = M, p = −1/2.

Hence action variables ω1 and ω2 is expressed via elementary 
functions only if

1

M
is integer or

1

M
− 1

2
is integer.

In order to avoid logarithmic term ln(t) = ∫
t−1 in (2.5), which is 

also an elementary function, we have to consider only zero, posi-
tive and negative values of M , respectively.

For Mk from (1.2) action variables (2.5) are

Mk = 0, ω = 2qk

pk
,

Mk = 1

nk
> 0, ωk = polynomial of order 2nk − 1.

For Mk from (1.3) action variables (2.5) are

Mk = 0, ω = 2qk

pK
,

Mk = − 2

2n − 1
< 0, ω = polynomial of order 2nk − 1

Ink
k

,

where Ik , k = 1, 2, is the corresponding action variable. Let us 
show a few explicit formulae for positive exponents

M2 = 1, ω2 = p2

b
,

M2 = 1

3
, ω2 = p2(3b2q2/3

2 + 4bq1/3
2 p2

2 + 8/5p4
2)

b3
,

and negative exponents

M2 = −2

3
, ω2 = − p2(3bq1/3

2 + q2 p2
2)

2
(

p2
2 + bq−2/3

2

)2
,

M2 = −2

5
, ω2 = − p2(5bq1/5

2 + 10/3bq3/5
2 p2

2 + q2 p4
2)

2
(

p2
2 + bq−2/5

2

)3
.

Other partial or generic expressions for integrals may be found in 
textbooks, tables of integrals or any computer algebra system.

Proposition 1. A Hamiltonian system defined by H (1.1) has a polyno-
mial first integral XN of order N, if M1 and M2 belong to (1.2) or (1.3):

1. if M1 = 1/n1 and M2 = 1/n2 , then

X2n−1 = ω1 − ω2, where n = max(n1,n2);
2. if M1 = −2/(2n1 − 1) and M2 = −2/(2n2 − 1), then

X2n−1 = (ω1 − ω2)In1
1 In2

2 , where n = n1 + n2;
3. if M1 = 1/n1 and M2 = −2/(2n2 − 1), then

X2n−1 = (ω1 − ω2)In2
2 , where n = n1 + n2;

4. if M1 = 0 and M2 = 1/n, then

X2n = p1(ω1 − ω2), where p1 = √
I1;

5. if M1 = 0 and M2 = −2/(2n − 1), then

X2n = p1(ω1 − ω2)In
2, where p1 = √

I1.

This integral of motion XN is functionally independent from I1,2 (2.5).
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