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We present the first exact calculation of the energy of the bound state of a one dimensional Dirac 
massive particle in weak short-range arbitrary potentials, using perturbation theory to fourth order (the 
analogous result for two dimensional systems with confinement along one direction and arbitrary mass 
is also calculated to second order). We show that the non-perturbative extension obtained using Padé 
approximants can provide remarkably good approximations even for deep wells, in certain range of 
physical parameters. As an example, we discuss the case of two gaussian wells, comparing numerical 
and analytical results, predicted by our formulas.

© 2018 Published by Elsevier B.V.

1. Introduction

Almost 90 years have passed since Dirac established his famous 
equation, successfully combining Quantum Mechanics and Special 
Relativity, the two physical theories that completely changed our 
understanding of Nature at the beginning of the previous century. 
The importance of the Dirac equation can hardly be overstated: 
it predicts the existence of antimatter (discovered by Anderson in 
1932), it explains the spin of the electron, recovering Pauli’s theory 
in the low energy limit, and it also describes correctly the observed 
spectrum of the hydrogen atom, all at once. Another consequence 
of the Dirac equation, the Zitterbewegung (trembling motion) of the 
electron, has not been experimentally observed, although recently 
it has been simulated on physical systems composed of atoms 
which mimic the behavior of a free relativistic particle [1,2]. In 
recent years, the Dirac equation has also been used to describe 
the low energy spectrum of graphene, with either massless [3] or 
massive [4] excitations.

It is interesting to observe that even from the point of view of 
the theory, there are consequences of the Dirac equation that still 
need to be explored; our attention in the present paper is devoted 
to the study of the behavior of weakly bound relativistic states in 
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one and two dimensional systems. The non-relativistic counterpart 
of this problem, has been settled long time ago in a seminal paper 
by Simon [5], where the conditions for the existence of this bound 
state have been given and the analyticity (non-analyticity) of the 
energy in one (two) dimension has been established.

For the relativistic case, the conditions under which a Dirac par-
ticle is trapped in a one-dimensional potential have been identified 
in ref. [6]; more recently Cuenin and Siegel [7] have studied the 
weakly coupling eigenvalue asymptotics for the bound state of the 
one dimensional Dirac operator, perturbed by a matrix-valued and 
non-symmetric potential.

For the case of a non-relativistic particle in a one dimensional 
short-range potential, a formula for the energy of the bound state 
has been derived up to sixth order: Simon [5] reports an unpub-
lished result obtained by Abarbanel, Callan and Goldberger [8], 
which is exact to third order in the parameter controlling the 
strength of the potential, whereas higher order corrections (up to 
order six) have been derived later [11,10,9] using different tech-
niques. Interestingly, a similar analysis for the relativistic case is 
still lacking and this constitutes the main goal of the present paper.

The approach that we will follow in this paper has been orig-
inally proposed by Gat and Rosenstein [10], and applied to the 
non-relativistic version of the present problem (to third order in 
the perturbation parameter) and to a (1 + 1) dimensional QFT; in 
a recent work by two of the present authors, ref. [9], the method 
has been applied to calculate the energy of the bound state of an 
arbitrary shallow short range potential to sixth order.

https://doi.org/10.1016/j.physleta.2018.05.048
0375-9601/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.physleta.2018.05.048
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:paolo.amore@gmail.com
mailto:fernande@quimica.unlp.edu.ar
mailto:ejimenezr@ucol.mx
https://doi.org/10.1016/j.physleta.2018.05.048
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2018.05.048&domain=pdf


2098 P. Amore et al. / Physics Letters A 382 (2018) 2097–2102

2. The method

We will first briefly describe how the method works for the 
non-relativistic problem and then discuss how it can be extended 
to its relativistic counterpart.

Let Ĥ be the hamiltonian of the problem

Ĥ(λ) = − d2

dx2
+ λV (x) (1)

where V (x) < 0 for x ∈ (−∞, ∞) and lim|x|→∞ V (x) = 0. Here 
λ > 0 is a parameter that controls the strength of the potential 
well. As noticed in [10], one cannot use Ĥ(0) as the unperturbed 
hamiltonian, since, for λ > 0 the spectrum of Ĥ contains (at least) 
one bound state, whereas the spectrum of Ĥ(0) is continuous.

Instead we use as unperturbed Hamiltonian the operator

Ĥ0 ≡ − d2

dx2
− 2βδ(x) , β > 0 . (2)

Ĥ0 has just one bound state with energy ε0 = −β2 and a con-
tinuum of states, for ε > 0 (the reader may refer to ref. [12] for a 
discussion of the one center δ interaction in one dimension). As a 
result, the Schrödinger equation[

Ĥ0 + λV (x)
]
ψ(x) = Eψ(x) (3)

can now be studied perturbatively in λ, working with a finite β
and assuming E = ∑∞

n=0 λnεn and ψ(x) = ∑∞
n=0 λnφn(x). The in-

frared divergencies, which would spoil the perturbative expansion 
when H(0) is used, manifest, at a given order, as inverse powers 
of β , and cancel out exactly, rendering each order perfectly finite.

Contrary to the approach followed in [10,9], where the standard 
Rayleigh–Schrödinger approach involving matrix elements was ap-
plied, here we obtain a perturbative solution of the Schrödinger 
equation in terms of the appropriate Green’s functions.

To lowest order in λ one has the eigenvalue equation(
− d2

dx2
− 2β δ(x)

)
φ0(x) = ε0φ0(x) (4)

In this case the eigenvalue and eigenfunction are ε0 = −β2 and 
φ0(x) = √

βe−β|x| respectively.
To higher orders one obtains the equations

Dφn(x) = −V (x)φn−1(x) +
n∑

k=1

εkφn−k(x) ≡ Sn(x) (5)

where

D ≡
(

− d2

dx2
− 2βδ(x) + β2

)
(6)

To deal with them one needs to consider the Green’s function 
G(x, y) defined by

DG(x, y) = δ(x − y) (7)

and write the solution of order n as φn(x) = ´
G(x, y)Sn(y)dy. 

The exact form of this and higher orders Green’s functions can be 
found in ref. [9]. This equation needs to be complemented by the 
conditionˆ

Sn(x)φ0(x)dx = 0 ; n ≥ 1 , (8)

which removes the “secular terms” in the expansion. Equation (8)
only gives the energy and the wave function at a given order.

This approach has the advantage of avoiding the appearance of 
infinite series and it allows one to consider more general eigen-
value equations, as in the case of a relativistic particle.

Let us now discuss the case of a relativistic particle in one or 
two dimensions, obeying the Dirac equation Ĥψ = E(λ)ψ , where

Ĥ = −i σ · ∇ + σ3 m + λW (x) (9)

and ψ = (ψ1 ψ2) is a spinor (σi are the usual Pauli matrices).
Here σ · ∇ = σ1∂x for the one dimensional case and σ · ∇ =

σ1∂x + σ2∂y for the two-dimensional one.
The potential, which depends only on x, is given by

W (x) = 1

2
[σ3 ( V (x) + U (x)) + 1 ( V (x) − U (x))] ,

where (V (x) + U (x))/2 and (V (x) − U (x))/2 are a vector and a 
scalar potential respectively.

Equations of the form of (9) have been studied previously, 
in particular for the case of point-like interactions in one di-
mension [13] and for graphene and graphite systems, subject to 
piecewise-constant potentials [14,15].

We can work in one or two dimensions in an unified frame-
work by using the ansatz exp[iqy]ψ(x) (the one dimensional case 
is recovered for q = 0) and write explicitly the Dirac equation in 
terms of its components

(−E + m + λV )ψ1 − i (q + ∂x)ψ2 = 0

−(E + m + λU )ψ2 + i (q − ∂x)ψ1 = 0 (10)

Using the second equation we can express ψ2 in terms of ψ1

and then use it inside the first equation to obtain a second order 
differential equation for ψ1 alone:

−ψ ′′
1 (x) + λU ′(x)ψ ′

1(x)

E + m + λU (x)
+ V(x)ψ1(x)

=
(

E2 − k2(q)
)

ψ1(x) (11)

with

V(x) ≡
(
λ(m − E)U (x) + λ(E + m)V (x) + λ2U (x)V (x)

)
(12)

and k(q) ≡ √
q2 + m2.

When U (x) = 0 this equation takes a simpler form of a 
Schrödinger-like equation, with an energy dependent potential, as 
already pointed out by Coutinho and Nogami [6]. For the special 
case E + m + λU (x0) = 0 for some x0 ∈ R, in which the denom-
inator in the second term of eq. (11) vanishes, the eigenfunction 
needs to obey the additional boundary condition ψ ′

1(x0) = 0 (see 
the discussion in Fig. 3).

Eq. (11) is now in the appropriate form to be attacked using the 
approach that we have previously described for the non-relativistic 
case, introducing an attractive delta potential of strength β , that 
allows to separate a single bound state from the continuum. This 
amounts to substituting − d2

dx2 → − d2

dx2 − 2βδ(x) = D − β2, previ-
ously defined, and then casting equation (11), in a compact form, 
formally similar to the nonrelativistic case, as(
D − β2

)
ψ1 = W̃ ψ1 , (13)

where

W̃(x) ≡ − λU ′(x)

E + m + λU (x)

d

dx
+

(
E2 − k2(q) − V(x)

)
(14)

is an operator defined on the real line (with the possible exception 
of x0 for which the denominator E + m + λU (x) vanishes).
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