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Quantum-size effects unavoidably produce imperfect-regeneration heat losses in irreversible isothermal 
expansion/compression cycles, leading to the less efficiency of micro engines. Here, we design a smallest 
quantum Stirling-like heat engine using a single trapped electron as the working substance. The quantum 
probabilities to determine the electronic position are constructed from the incoherent mixed ensemble. 
When the quantum well expands isothermally to double its size and an infinite delta-function potential 
barrier is inserted in the middle, the complete degeneracies enable the heat engine to work reversibly 
and achieve the Carnot efficiency. The proposed theoretical model can open up new avenues for building 
practical nano-energy devices.

© 2018 Published by Elsevier B.V.

1. Introduction

The particle in a bound state exhibits quantized energy levels 
and quantum degeneracies, providing an automated platform for 
interpreting the quantum size effects [1–3]. The emergent scale 
phenomena may make a nanomachine become inefficient to op-
erate the energy harvesting. In particular, the discrete eigenstates 
will give rise to non-perfect regeneration when a quantum ther-
modynamic cycle involves two isochoric processes with the regen-
erative heat [4–6].

Non-equilibrium effects and the exchange of entropy with infor-
mation reservoirs are non-conventional resources that can be used 
to develop quantum-mechanical engines running near the Carnot 
limit. Bringing quantum coherence into Photo-Carnot engines [7,
8] and photocells [9–11] has the potential to deliver useful work 
with more reliable performance and faster speed. Campisi and Ma 
suggested a different route based on the quantum phase transi-
tion [12,13]. Roßnagel et al. proposed an experimental feasible 
scheme to design efficient Otto engine cycles using the quantum 
fuel with the degree of squeezing [14,15]. The concept of fluctu-
ating efficiency was proposed to characterize the performance of 
small-scale systems [16,17]. For the Szilard engine, Maxwell’s de-
mon can significantly improve the power-extraction capability in 
the context of information processing [18–20].
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The question arises as to whether the heat machine can be 
manipulated in an effective way without preparing the working 
substance or the heat bath in any specific status. Here, we present 
a reversible heat engine, relying on the systemic inherent band 
structure. Our main results show that quantum degeneracies due 
to the boundary layer effects will be of great benefit to generating 
entropy-free work. Using a suitable trapping potential well, one is 
capable of fabricating quantum heat engines that in principle at-
tain the Carnot efficiency.

In the following, we construct a quantum Stirling-like heat en-
gine with a single trapped electron. The cycle consists of two 
quantum isothermal and two quantum isochoric processes. We will 
give a precise description for the statistical properties of the four 
stroke engine. The heat transfers between the working substance 
and the heat baths, the amount of work done during a cycle, and 
the efficiency of the heat engine will be derived analytically. We 
are especially interested in revealing the necessary conditions for 
the perfect regeneration and the reversible operation by separating 
the isothermal process into two individual steps.

2. Quantum isothermal process

The partition function is a measure of the thermodynamic be-
haviors of a system in thermodynamic equilibrium. In this study, 
the canonical partition function for any distinct mixed state will 
be applied to perform a statistical analysis of a semiconductor 
quantum-well system. The quantum isothermal process starts from 
a thermal equilibrium state denoted by A in Fig. 1, which can be 
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Fig. 1. The diagram of a quantum Stirling-like cycle based on a single trapped elec-
tron in a layered semiconductor structure.

treated as a single electron free to move in a narrow space sur-
rounded by impenetrable barriers. Its position wave function is 
expected to take the following form

〈x |ψn (L1)〉 =
√

2

L1
sin (nπx/L1) , (1)

where L1 is the width of the space and n is a positive integer 
ranging from 1 to ∞. The eigenenergy corresponding to each of 
the permitted wavenumbers is given by En (L1) = (h̄nπ)2/ 

(
2mL2

1

)
, 

where m is the effective electron mass and h̄ is the Planck constant 
h divided by 2π . Writing the systemic Hamiltonian in terms of its 
eigenvectors, we have

H A =
∑

n

En (L1) |ψn (L1)〉 〈ψn (L1)| . (2)

These quantum well structures are particularly important in op-
toelectronics [21,22], and have been widely used in devices such 
as quantum well lasers, quantum-confined Stark effect modulators, 
and quantum infrared photodetectors. The initial state of the sys-
tem in the energy representation is taken as

ρA = 1

Z (L1)

∑
n

exp [−βh En (L1)] |ψn (L1)〉 〈ψn (L1)| . (3)

The partition function Z (L1) = ∑
n

exp [−βh En (L1)] and∑
n

|ψn (L1)〉 〈ψn (L1)| is identically the unit operator. As usual, βh is 

the inverse of the product kB Th , where kB = 8.617 × 10−5 eV·K−1

is the Boltzmann constant and Th is the equilibrium temperature 
of the system at state A.

We consider a two-step process taking place in such a way 
that during each step the system remains in a state of thermal 
equilibrium with the heat bath at temperature Th . At the begin-
ning, the quantum well expands quasi-statically until the width 
becomes L2 (from state A to state B). In the second process, an in-
finite δ function potential barrier is isothermally inserted into the 
potential well at position x = l (from state B to state C). The poten-
tial well is then partitioned into two domains, designated simply 
as the left (|Ln (l)〉) and right (|Rn (L2-l)〉) wells. The eigenfunctions 
is then given as

〈x |Ln (l)〉 =
{√

2
l sin [nπx/l] 0 ≤ x ≤ l

0 l ≤ x ≤ L2
(4a)

and

〈x |Rn (L2-l)〉 =
{

0 0 ≤ x ≤ l√
2

L2−l sin
[

nπ(x−l)]
(L2−l)

]
l ≤ x ≤ L2

(4b)

with the corresponding eigenvalues En (l) and En (L2 − l). The com-
plete Hamiltonian can be reconstructed from the nth eigenfunc-
tions of the left (|Ln (l)〉) and right (|Rn (L2-l)〉) wells, that is,

HC =
∑

n

En (l) |Ln (l)〉 〈Ln (l)| + En (L2 − l) |Rn (L2-l)〉 〈Rn (L2-l)| .

(5)

The system is still in thermodynamic equilibrium when the in-
sertion process is complete. In the mixed ensemble, the fraction 
P L

h (l) = Zh (l) /Zh (l) gives the probability of the members char-
acterizing the state ket |Ln (l)〉. The remaining fraction P R

h (l) =
Zh (L2 − l) /Zh (l) stands for the relative population of the right do-
main |Rn (L2-l)〉. The partition function Zh (l) = Zh (l) + Zh (L2 − l)
represents a collection of the various energy eigenstates. Unlike 
the classical ideal gas, P L

h (l) �= l/L2 and P R
h (l) �= L2 − l/L2. These 

differences can be used to extract energy and provide the key to 
the perfect regeneration for reversible quantum heat engines. The 
density operator is regarded as an incoherent mixture of the gen-
eral basis {|Ln (l)〉 , |Rn (L2-l)〉} as

ρC = P L
h (l)ρL

h (l) + P R
h (l)ρR

h (L2 − l) , (6)

where

ρL
h (l) =

∑
n

exp [−βh En (l)]

Zh (l)
|Ln (l)〉 〈Ln (l)| (7a)

and

ρR
h (L2 − l) =

∑
n

exp [−βh En (L2 − l)]

Zh (L2 − l)
|Rn (L2-l)〉 〈Rn (L2-l)| .

(7b)

The density matrix becomes either ρ L
h (l) or ρR

h (L2 − l) depending 
on the probability of finding the electron in each particular well.

We are now capable of identifying the internal energy and 
the entropy of the system at state C in relation to the partition 
function Zh (l). The internal energy arises by combining Eqs. (5)
and (6)

UC = Tr [ρC HC ] = − ∂

∂βh
lnZh (l) , (8)

which is the sum over all the accessible microstate energies 
weighted by their respective probabilities. In the energy repre-
sentation, the density matrix at thermal equilibrium is diagonal. 
The thermodynamic entropy is legitimately equivalent to the von 
Neumann entropy and is, therefore, given by

SC = kB Tr [−ρC lnρC ] = kB

(
1 − βh

∂

∂βh

)
lnZh (l) . (9)

In view of Eqs. (8) and (9), the canonical partition function Zh (l)
gives a precise description for the statistical properties of the 
mixed ensemble.

In the quantum isothermal process, the system can perform 
work to the outside agent, and meanwhile absorb heat from the 
bath. Both the eigenenergies and the corresponding occupation 
probabilities need to change with time, so that the system remains 
in an equilibrium state with the heat bath at every instant. In 
Refs. [23–26], it has been pointed out that the quantum isothermal 
process can be modeled by a stair path with an infinite number of 
quantum adiabatic and isochoric processes. When every step of the 
manipulation is infinitesimal, the stair path becomes equivalent to 
the isothermal evolution. Koski et al. reported the experimental 
realization of manipulating a single electron in the isothermal pro-
cess, which utilized a single-electron box consisting of two small 



Download English Version:

https://daneshyari.com/en/article/8203110

Download Persian Version:

https://daneshyari.com/article/8203110

Daneshyari.com

https://daneshyari.com/en/article/8203110
https://daneshyari.com/article/8203110
https://daneshyari.com

