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Using a generalized formulation of the fluctuation–dissipation theorem I evaluate the correlation between 
thermal noises. I investigate the possibility of extracting additional information about the thermal noise 
coupled to the measurement of a physical quantity, such as the output of an interferometric detector of 
gravitational waves, using a set of auxiliary beams.
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1. Introduction

Thermal noise is one of the fundamental limits for the sensi-
tivity of gravitational wave detectors such as LIGO or Virgo in the 
low frequency part of the observational frequency window. In or-
der to reduce it we can “use the statistic”, using larger laser beam 
spots to average better the mirrors fluctuations. We can “use the 
thermodynamics” by putting the mirror at cryogenic temperatures. 
Finally we can try to reduce the coupling of the mirrors to the 
environment by improving the materials in such a way to reduce 
damping effects.

The scheme of noise reduction I want to discuss is a variant 
of the “statistical” approach, in principle simple and general. The 
first step consists in monitoring the noise of an apparatus using 
auxiliary measurements. The results of this monitoring can be used 
to implement a subtraction scheme based on linear regression. The 
subtraction can be done “off line”, processing the recorded data.

In Section 2 I describe the basic subtraction scheme and I de-
termine the parameters which characterize the efficiency of the 
procedure. For a single auxiliary measurement the key quantity is 
the coherence between the signal we want to subtract and the 
monitoring channels. As expected a good subtraction efficiency re-
quires a good coherence between signal and monitoring channel, 
in a sense that is made precise. When several auxiliary channels 
are present the relevant parameter is an appropriate generaliza-
tion of the coherence which takes into account the redundancy of 
auxiliary channels. The role of the extra noise introduced in the 
monitoring channels is discussed.

The efficiency of this method can be estimated by using the 
fluctuation–dissipation theorem. It is in particular possible to give 
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a formulation which generalize the approach proposed in Levin 
[10,11], as discussed in Section 3.

In Section 4 I give concrete examples, and I evaluate the sub-
traction efficiency for several kind of thermal noises for an infinite 
size mirror, which allows for analytical calculations.

Finally I draw some conclusions and I comment about the pos-
sible developments of the proposed approach in Section 5.

2. The subtraction scheme

Let us suppose that our objective is to reduce the level of 
thermal noise which contaminates the measurement of the dis-
placement of a mirror along its optical axis. The schematization of 
a possible setup is represented in Fig. 1. The main beam on the 
right side is the one used normally for the measurement. In the 
general case the mirror is monitored by an additional set of aux-
iliary beams, each of them coupled in a different way to it. The 
information we get from the i-th auxiliary beam is a phase shift 
φi(t), that we want to use to “subtract” the thermal noise contri-
bution from the phase shift �(t) of the main beam.

The auxiliary phase shifts will be measured with respect to 
some references that I suppose to give a negligible contribution to 
the noise. I am not concerned here about how this could be pos-
sible, as I am interested only in understanding the basic features 
of the method. I suppose also that the auxiliary measurements are 
unaffected by the signal that the cavity is supposed to detect (for 
example, a gravitational wave).

I assume that all the measured phase shifts are small, so a 
linear analysis will be sufficient. If this is the case, in a station-
ary condition the statistical properties of the available signals are 
completely described by the power spectrum S�(ω) of the main
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Fig. 1. Schematic setup for a basic subtraction scheme. The main beam overlaps with a set of auxiliary beams, on the left side. The reflective coating is indicated in gray.

mirror’s phase, which is defined in term of the cross correlation 
function as〈
�̃(ω′)∗�̃(ω)

〉
= 2πδ

(
ω − ω′) S�(ω) (1)

by the correlations Bi(ω) between the main mirror’s phase and 
the phases of the auxiliary beams〈
φ̃i(ω)∗�̃(ω′)

〉
= 2πδ

(
ω − ω′) Bi(ω) (2)

and by the Hermitian matrix of the cross correlations Cij(ω) be-
tween the φi ’s〈
φ̃i(ω

′)∗φ̃ j(ω)
〉
= 2πδ

(
ω − ω′)Cij(ω) (3)

The optimal reduction of the cavity motion can be obtained by 
imposing that the noise power spectrum of a “subtracted” signal

�̃S(ω) = �̃(ω) −
∑

i

χi(ω)φ̃i(ω) (4)

is minimized. This is equivalent to impose that �S is uncorrelated 
with each of the φi , and solving for this condition we obtain the 
functions χi(ω)

χi(ω) =
[

C−1(ω)
]

i j
B j(ω) (5)

which are linear filters in the time domain that must be applied to 
the auxiliary signals. The reduced noise power spectrum is given 
by〈
�̃S(ω

′)�̃S(ω)∗
〉
= 2πδ

(
ω − ω′) S�S (ω) (6)

which can be written as

S�S (ω) = [1 − η(ω)] S�(ω) (7)

where

η(ω) =
Bi(ω)∗

[
C−1(ω)

]
i j B j(ω)

S�(ω)
(8)

In the case of a single auxiliary channel η(ω) is just the squared 
modulus of the coherence between the main signal � and the aux-
iliary one φ. We obtain the intuitive result that to get a good sub-
traction performance, as measured by the noise power spectrum, 
we need a high level of coherence. The general case described by 
Equations (7) and (8) can be understood by noticing that a higher 
correlation between auxiliary signals should correspond to smaller 
values of C−1, which is bad, while a higher correlation between 
auxiliary and main signal correspond to higher values of B , which 
is good.

As will be seen in the next section, the correlation between the 
phase shift of two different beams is proportional, roughly speak-
ing, to the overlap between the beam profiles. Looking at Fig. 1, it 
can be seen that we should find a compromise solution with large 
correlations between � and φi ’s (which means that the superpo-
sition of auxiliary and the main beams must be good), but with a 

small one among the φi ’s (which means that the auxiliary beams 
should not overlap too much). This is intuitive because we could 
subtract noise proportionally to the information we get about it, 
and this one is increased by a larger overlap between main and 
auxiliary beams, but it is reduced by a redundancy between these. 
C−1 is positive semi-definite, so η ≥ 0 and subtracted noise is al-
ways less (or equal) than the original one.

3. Correlation between thermal noises

In order to understand how much the subtraction technique de-
scribed can be used to reduce the effective level of thermal noise 
in a specific situation, we need to evaluate the functions S , Bi and 
Cij for a particular model. The basic quantity involved is given by 
the cross correlation between the thermally induced phase shift on 
two different beams, which we want now to evaluate.

A phase shift can be induced in several ways by the thermal 
motion of the mirror. For example the beam can be reflected by 
the mirror’s surface. In this case we write the small deformation 
field of the mirror as �u(�x, z, t), where z is a coordinate along the 
optical axis while �x is in the plane orthogonal to it. The relation 
between the incident and the reflected field near the reflecting 
surface which we suppose for simplicity to be flat and at z = 0
is given simply by

Er(�x,0, t) = Ei(�x,0, t)e2ikuz(�x,0,t)

and if we expand the incident and the reflected field on two suit-
able orthogonal basis Imn and R pq , each labeled by two integers, 
we can evaluate the transition amplitudes〈
R pq

∣∣∣e2ikuz

∣∣∣ Imn

〉
=
∫

R pq(�x)∗ Imn(�x)e2ikuz(�x,0,t)d2x (9)

This gives us a complete characterization of the effects of mirror’s 
motion on a beam. The two basis can be chosen in such a way that 
when the mirror is quiet (�u = 0)

〈R pq || Imn〉 = δpmδqn (10)

which mean that the output mode is just the reflected input one. 
We can now write at the linear order in the variation of the mir-
ror’s position [7]

δφ
(I)
mn = 2k 〈Imn |uz| Imn〉 = 2k

∫
Imn(�x)uz(�x,0, t)d2x (11)

where Imn(�x) = |Imn(�x)|2 is the intensity profile of the mode and 
interpret δφ(I)

mn as the phase shift induced on the mode (m, n) by 
the mirror’s motion. More general couplings can be generated for 
beams which traverse the mirror’s bulk, such as the auxiliary ones 
in Fig. 1. In this case the optical path length can be changed both 
by geometrical effects, such as a fluctuation of the mirror’s width, 
and by a fluctuation of the refraction index originated by a temper-
ature fluctuation. To proceed further the attention will be fixed on 
some specific mechanisms for the generation of the random fluc-
tuations.
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