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The collective excitation of surface plasmons in a massless Dirac plasma (e.g., graphene) half-space 
(bounded by air) is investigated using a relativistic quantum fluid model. The unique features of such 
surface waves are discussed and compared with those in a Fermi plasma. It is found that in contrast 
to Fermi plasmas, the long-wavelength surface plasmon frequency (ω) in massless Dirac plasmas is 
explicitly nonclassical, i.e., ω ∝ 1/

√
h̄, where h = 2π h̄ is the Planck’s constant. Besides some apparent 

similarities between the surface plasmon frequencies in massless Dirac plasmas and Fermi plasmas, 
several notable differences are also found and discussed. Our findings elucidate the properties of surface 
plasmons that may propagate in degenerate plasmas where the relativistic and quantum effects play a 
vital role.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The collective oscillations of interacting electrons (i.e., plas-
mons), have attracted a considerable attention due to their poten-
tial applications, e.g., in exploring the effects of electron–electron 
interactions in different physical systems including optical meta-
materials, in receiving light signals at the nanoscale, in ultrafast 
lasers, in solar cells, in photodetectors, in biochemical sensing, as 
well as, in transmitting antennas [1–12]. A number of theoreti-
cal works [1,2,13] on collective modes of ordinary (Schrödinger) 
electrons in Fermi plasmas and their experimental verifications 
[13–15] are already in the literature. The classical plasma fre-
quency in three-dimensional (3D) plasmas is known to be ωp =√

4πn0e2/m, where n0 is the unperturbed number density and 
m the mass of electrons. Though this frequency appears in Fermi 
plasma fluids, it may not be the same in massless Dirac plasmas, 
such as those in, e.g., graphene.

Because of its peculiar features and amazing electronic and op-
tical properties, graphene has attracted a huge interest in recent 
years. The dense honeycomb arrangements of carbon atoms with 
photon-like massless energy relation have made it possible for the 
charge carriers in graphene to mimic both relativistic and quan-
tum effects at the same time [16]. Such massless electrons can 
move with an effective Fermi speed of about v F ∼ 106 m/s, which 
is independent of the carrier number density. It has been shown 
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that the dynamics of two-dimensional (2D) gas of charged parti-
cles in graphene can be described by the relativistic Dirac fluid 
model [17,18]. In this context, the linear-band dispersion of Dirac 
electrons in graphene is known to be the origin of some new fea-
tures in wave dynamics that are distinctive from the ordinary 2D 
degenerate electron gas [17].

Dirac materials (particularly in graphene) [6,19–23] have been 
considered for the excitation of plasmons due to their tunable 
spectrum through the electrostatic control of their carrier concen-
tration, and also their high lifetime plasmons (because of high mo-
bility). A number of authors have proposed the theory of plasmons 
in Dirac systems in various forms, such as topological insulators 
[24,25], graphene [17,26–29], Weyl semi-metals [30], graphene mi-
croribon arrays [19], and massless Dirac plasma layers [17,31,32].

The propagation of electrostatic surface waves in semi-bounded 
plasmas have been studied by Ritchie [33] and the effects of fi-
nite temperature on these surface waves have also been discussed 
by using a hydrodynamic model. The theory of Ritchie was later 
extended to a quantum plasma half-space using a quantum hydro-
dynamic (QHD) model by Lazar et al. [34]. Furthermore, the disper-
sion properties of surface Langmuir oscillations have been studied 
by Chang et al. [35] in a semi-bounded quantum plasma using the 
specular reflection method. Such QHD model has been known to 
be one of the powerful models for the investigation of wave dy-
namics in quantum plasmas [37–52]. It has been shown that the 
propagation characteristics of surface waves can be modified by 
the effects of quantum tunneling [37–50], the external magnetic 
field [40,51,52], the particle–particle collisions [40], the relativis-
tic factor [31], the particle spins [44,48], nonlocality [42,43,45], as 
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well as, the effects of exchange-correlation of plasma particles [41,
45–48]. On the other hand, some attention has also been paid to 
investigate nonlinear effects in surface plasma waves. For example, 
Stenflo [36] showed that surface plasma solitary waves can appear 
in the vicinity of the interface between a plasma and the bound-
ing medium. However, to the best of our knowledge, the theory 
of surface plasmons in massless Dirac plasmas has not yet been 
explored, and so is the subject of the present study.

In this letter, we show that the surface plasmons in mass-
less Dirac plasmas and Fermi plasmas have several striking dif-
ferences including the fact that the long-wavelength surface plas-
mon frequency in massless Dirac plasmas is explicitly nonclassical, 
whereas that in Fermi plasmas corresponds to the classical plasma 
frequency. The outline of this paper is as follows: An introduction 
is given in Sec. 1. The fundamental set of dynamical equations for 
massless Dirac plasmas and Fermi plasmas are presented in Sec. 2. 
Then, the dispersion relation of surface plasma waves is obtained 
in Sec. 3. Finally, Sec. 4 is left to conclude our results.

2. Hydrodynamic model for a massless Dirac plasma

We consider the propagation of surface plasma oscillations in 
semi-bounded massless Dirac plasmas and Fermi plasmas. To this 
end, we employ the quantum hydrodynamic model applicable for 
both Dirac and Fermi plasmas with ions forming only the neu-
tralizing background. In the fluid equations, the appropriate pres-
sure laws for the Dirac and Fermi fluids (to be denoted, respec-
tively, with the subscripts ‘D’ and ‘F’) may be discussed. First 
of all, the assumption of a well-defined Fermi wavenumber kF

can be valid with the definition of the d-dimensional electronic 
density [18] nd = gkF /2dπd/2� (1 + d/2), where g , d, and � are, 
respectively, the degeneracy factor (g = gs gv with gs = 2 being 
the spin degeneracy and gv the pseudo-spin degeneracy factor 
which for graphene is ∼ 2), the system dimensionality and the 
Gamma function. We, however, consider a degenerate plasma at 
zero temperature in which the energy density can be obtained as 
ε = ∫ kF

0 E(k)ddk, where the energy dispersion relation E(k) is ex-
pressed differently in each plasma system, given by, εD = h̄kv F

and εF = h̄2k2/2m. In the case of a massive Dirac fluid we have 

ε ∼ h̄
√

k2 + (�/h̄v F )2 v F , where 2� is the energy gap. However, 
this is not the case in our present theory. Next, the thermody-
namical identity P = n∂ε/∂n − n can be employed to obtain the 
following expressions of pressure for the Dirac and Fermi fluids in 
three-dimensional plasmas [53]

P D =
(
3π2

)4/3

12π2
v F h̄n4/3, P F =

(
3π2

)2/3

5me
h̄2n5/3. (1)

We emphasize that the density dependencies of P D and P F are 
different. We also note that the QHD model can be employed for 
both the cases of non-relativistic quantum Fermi fluids and rel-
ativistic massless Dirac fluids. Furthermore, the QHD model for 
Dirac fluids is independent of the electron mass [54,55] for which 
the basic equations read

∂n

∂t
+ ∇ · (nu) = 0, (2)

(P + ε)

(
∂

∂t
+ u · ∇

)
u =enc2 [∇φ +βββ (βββ · ∇)φ]

− c2

γ 2

(
∇ P + βββ

c

∂ P

∂t

)
,

(3)

∇2φ = 4πe (n − n0) , (4)

where n and u, respectively, denote the number density and ve-
locity of electrons, φ is the electrostatic potential, n0 is the equi-
librium number density of electrons and ions, and P is the fluid 
pressure. Also, βββ = u/c with c denoting the speed of light in vac-
uum and γ = 1/

√
1 − β2 is the relativistic factor.

In the weak relativistic limit P � ε = mnc2, the pressure in 
Eq. (3) can be due to the Fermi degeneracy pressure P F [41]. 
Furthermore, in unmagnetized plasmas and with u ≤ v F � c for 
which γ ∼ 1, the following equations can be obtained for Fermi 
plasmas.

∂n

∂t
+ ∇ · (nu) = 0, (5)(

∂

∂t
+ u · ∇

)
u = e

m
∇φ − 1

mn
∇ P F , (6)

∇2φ = 4πe (n − n0) , (7)

where P F is the Fermi pressure given by Eq. (1), and we have ne-
glected the quantum dispersion effect associated with the Bohm 
potential for simplicity and also for smallness compared to the 
degeneracy pressure gradient (e.g., in solid density plasmas). On 
the other hand, in Dirac plasmas, since the Fermi speed v F ∼
c/300, the weakly relativistic condition (β � 1) can be employed, 
however, due to the different energy dispersion E for the Dirac 
fermions and the ordinary fermions (viz., E ∼ h̄kv F and E ∼
h̄2k2/2m respectively), the weak relativistic assumption does not 
apply to the massless Dirac fluids, and in this case, the correspond-
ing equations read [53,55]

∂n

∂t
+ ∇ · (nu) = 0, (8)

(P + ε)

(
∂

∂t
+ u · ∇

)
u = enc2∇φ − c2∇ P D , (9)

∇2φ = 4πe (n − n0) , (10)

where the physical variables n, φ, u etc. all are functions of R and 
t with R = (r, x) and r = (y, z). The pressure P D in Eq. (9) repre-
sents the quantum fluid pressure for massless Dirac Plasmas given 
by Eq. (1). In what follows, we study the basic features of sur-
face plasma oscillations at the interface of a massless Dirac plasma 
(e.g., graphene) and air. The theory of surface plasmon excitation 
in Fermi plasmas is well-known and has been studied extensively 
[34,41,42,44,46–48], however, we review it for Fermi plasmas and 
compare with that in massless Dirac plasmas.

3. Dispersion relation of surface plasmons

In order to obtain the dispersion relation for surface plasmons 
in a massless Dirac plasma half-space (occupying the region x < 0) 
bounded by air (x > 0), we linearize the relevant physical quanti-
ties about their unperturbed (with suffix 0) and perturbed (with 
suffix 1) values by letting n = n0 + n1, u = u1, and φ = φ1, where 
n1 � n0. Then applying the space–time Fourier transform formula 
of an arbitrary function f (R, t), given by

f (R, t) = 1

(2π)3

∫ ∫
d3kdωF (k,ω; x)eik·r−iωt , (11)

where k = (
ky,kz

)
, to the linearized basic equations of Eqs. (8)

to (10), we obtain

d2N1(x)

dx2
− γ 2

j N1(x) = 0, (12)

d2�1(x)

dx2
− k2�1(x) = 4πeN1(x), (13)
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