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In this paper, we propose a scheme for generating multipartite entanglement of distant four-level 
atoms separately trapped in individual cavities, each of which is coupled to a non-Markovian reservoir. 
The entanglement of atoms is generated by measuring the photons leaking from cavities. In non-
Markovian environments, we derive dynamical evolution of the entanglement and obtain the condition 
of generating the long-living multipartite maximally entangled state. When the condition is not satisfied, 
by introducing a time-varying coupling strength, the maximal multipartite entangled state can also be 
generated.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Entanglement, as a striking feature of quantum physics, is the 
main quantum resource in various domains and many schemes 
have been proposed to generate entangled states [1]. In particular, 
multipartite entanglement plays an important role in quantum in-
formation processing, and many theoretical and experimental stud-
ies have been carried out [2–6].

In the realistic regime, however, quantum systems unavoidably 
interact with surrounding environments, i.e., surrounding environ-
ments have a significant influence on the dynamical behavior of 
quantum systems. Therefore, it is very important to investigate the 
dynamical behavior of entanglement in open systems, and the dis-
sipative dynamics of entanglement has attracted a lot of attention 
[7–11]. Up to now, many efforts have been devoted to the dynam-
ical behavior of entanglement in Markovian regime [12–15], which 
often results in decoherence and disentanglement [16–18]. How-
ever, many systems show non-Markovian properties which lead to 
a lot of interesting phenomena [19–25]. In non-Markovian environ-
ments, an important phenomenon is the sudden death and revival 
of entanglement, which has a big impact on generating long-living 
entanglement. Therefore, the non-Markovian property of environ-
ments play an essential role in entanglement generation.
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* Corresponding authors.
E-mail addresses: jsong@hit.edu.cn (J. Song), wqding@hit.edu.cn (W. Ding).

Recently, the Gardiner–Collett approach is widely applied in 
the researches of non-Markovian dynamics in cavity QED systems 
[26–29]. In [26], the authors study the exact entanglement dy-
namics of two two-level atoms in a dissipative cavity by using 
Gardiner–Collett approach, and introduce Zeno effect to preserve 
the entanglement stored in the system. The non-Markovian dy-
namics of the bipartite and multipartite entanglement for distant 
atoms is also investigated via Gardiner–Collett approach [27,29]. 
Here, we propose a scheme for generating the maximal multipar-
tite entanglement of distant four-level atoms via photon detection 
in non-Markovian environments. In our scheme, since only the 
atomic ground states are used to generate the entanglement, the 
generated entangled state is a long-living atomic entangled state. 
By using Gardiner–Collett approach, we investigate the dynamics 
of entanglement and obtain the condition of generating the max-
imal atomic entanglement. In addition, we also discuss the effects 
of the parameter fluctuations on the entanglement generation.

2. The model of atom-cavity system

We consider a dissipative cavity, which contains a four-level 
atom with two excited states (|eL〉 and |eR〉) and two ground 
states (|gL〉 and |gR〉) (see Fig. 1(a)). The transitions |eL〉 ↔ |gL〉
and |eR〉 ↔ |gR〉 are coupled to left and right circularly polarized 
cavity modes with coupling constants gL and gR, respectively. The 
left (right) circularly polarized cavity mode interacts with a reser-
voir, which consists of a set of continuous harmonic oscillators. The 
Hamiltonian of the atom-cavity system can be written as (h̄ = 1) 
[30,27,29]
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Fig. 1. (a) The level structure of the atom trapped in the dissipative cavity. It has two excited states (|eL〉 and |eR〉) and two ground states (|gL〉 and |gR 〉). (b) Schematic 
representation of generating tripartite entanglement for atoms. QWP is a quarter wave plate and PBS is a polarization beam splitter. R is a totally reflecting mirror and Di

(i = 1, 2, 3) are detectors.

H =
∑
j=L,R

[
ωe j |e j〉〈e j| + ωg j |g j〉〈g j| +

∫
ωA†

j(ω)A j(ω)dω

]

+
∑
j=L,R

∫
g j

[
α∗

j (ω)A j(ω)|e j〉〈g j| + H.c.
]

dω, (1)

where ωe j and ωg j are the energies of the states |e j〉 and |g j〉
( j = L, R), respectively. A j is the annihilation operator of cavity 

mode j. α j(ω) =
√

κ j/π

ω−ωc+iκ j
is used to describe the influence of 

environments on the cavity and g j is the coupling strength be-
tween the atom and cavity mode j. ωc and κ j are the frequency 
and the decay rate of cavity mode j, respectively. τg j = g−1

j is re-

lated to the relaxation time of the system and τκ j = κ j
−1 is the 

correlation time of the reservoir. When the correlation time of the 
reservoir is much longer than the relaxation time (τκ j � τg j ), the 
system is coupled to a non-Markovian reservoir. Conversely, when 
the relaxation time is much longer than the correlation time of the 
reservoir (τg j � τκ j ), the system is coupled to a Markovian reser-
voir. Transforming the Hamiltonian (1) into the interaction picture, 
we obtain

H I =
∑
j=L,R

∫
g j

[
α∗

j (ω)ei(ω j−ω)t A j(ω)|e j〉〈g j| + H.c.
]

dω, (2)

where ω j = ωe j − ωg j . Assuming the atom is initially in |ψ(0)〉 =
[cos(θ/2)|eL〉 +sin(θ/2)|eR〉]|0〉L|0〉R, where θ ∈ [0, π ] and |0〉 j rep-

resents for the vacuum state of cavity mode j. |1ω〉 j = A†
j(ω)|0〉 j

represents that there is one photon at frequency ω in cavity 
mode j. With at most only one excitation, the state at any time 
t can be written as

|ψ(t)〉 =
∑
j=L,R

E j(t)|e j〉|0〉L|0〉R +
∫

UL(t,ω)|gL〉|1ω〉L|0〉Rdω

+
∫

UR(t,ω)|gR〉|0〉L|1ω〉R]dω, (3)

where EL(t), ER(t), UL(t, ω), and UR(t, ω) are the time-varying 
probability amplitudes. Using Schrödinger equation, we obtain the 
equations of probabilities as follows ( j = L, R)

Ė j(t) = −ig j

∫
α∗

j (ω)ei(ω j−ω)t U j(ω, t)dω, (4a)

U̇ j(t) = −ig jα j(ω)e−i(ω j−ω)t E j(t). (4b)

The expressions of probability amplitudes can be obtained analyti-
cally by Laplace transform:

E j(t) = E j(0)e−(i	 j+κ j)t/2

×
[

cosh(
 jt/2) + i	 j + κ j

2
sinh(
 jt/2)

]
, (5)

where 
 j =
√

κ2
j − 	2

j − 4g2
j + 2i	 jκ j and 	 j = ωc − ω j is the 

detuning between the atom and cavity mode j.

3. The entanglement of the atom-cavity system

We investigate the entanglement of the atom-cavity system and 
linear entropy is used to quantify the amount of entanglement, 
which is defined as [31]

SL(t) = d

d − 1

[
1 − Tr

(
ρ2

A

)]
, (6)

where ρA is the atomic reduced density matrix of the atom-cavity 
system and d = 4 is the dimension of ρA . From Eqs. (3) and (6), 
the linear entropy is calculated as follows:

SL(t) = 4

3

[
1 −

(
|EL(t)|2 + |ER(t)|2

)2

−
∑
j=L,R

(
|E j(0)|2 − |E j(t)|2

)2
]
. (7)

From Eqs. (5) and (7), we know that the signs of detunings have no 
effect on the evolution of entanglement. Fig. 2 illustrates the time 
evolution of the linear entropy for different detunings in (a) non-
Markovian and (b) Markovian environments. In both two environ-
ments, the linear entropy first increases to a maximum rapidly and 
then gradually decreases to a constant value. The constant value of 
linear entropy means that the atom and the cavity field are fi-
nally in an entangled steady state, which ensures the generation 
of long-living entanglement of distant atoms. In non-Markovian 
environments, the linear entropy exhibits an oscillatory behavior 
due to the memory effect, which can not be seen in Markovian 
environments. It is because that there is a reversed flow of in-
formation from the environment back to the quantum system in 
non-Markovian environments, and the information backflow leads 
to the oscillations of entanglement. In addition, the presence of 
detunings can suppress the interaction between the atom and the 
cavity field. Therefore, in both non-Markovian and Markovian envi-
ronments, the atom-cavity system can reach the entangled steady 
state in a shorter time by decreasing the detunings.

4. The entanglement of distant atoms

Thanks to the entanglement between the atom and the cav-
ity field, we can entangle distant atoms by measuring the photons 
leaking from cavities. Here, we generate the entanglement of three 
atoms as an example. We consider the projection operator

P3 = |ϕ3〉〈ϕ3|, (8)

with
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