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We examine the integrability of two models used for the interaction of long and short waves in dispersive 
media. One is more classical but arguably cannot be derived from the underlying water wave equations, 
while the other one was recently derived. We use the method of Zakharov and Schulman to attempt to 
construct conserved quantities for these systems at different orders in the magnitude of the solutions. The 
coupled KdV–NLS model is shown to be nonintegrable, due to the presence of fourth-order resonances. 
A coupled real KdV–complex KdV system is shown to suffer the same fate, except for three special choices 
of the coefficients, where higher-order calculations or a different approach are necessary to conclude 
integrability or the absence thereof.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Systems that couple long and short waves have generated sig-
nificant interest recently (e.g. [3,4,9,11,13]). Much attention in this 
area has been devoted to the following system, known as the cubic 
nonlinear Schrödinger–Korteweg–de Vries (NLS–KdV) system:

iut + uxx + α |u|2 u = −βuv,

vt + γ v vx + vxxx = −β(|u|2)x,
(1)

where α, β and γ are real constants, x ∈ R, v is a real-valued func-
tion, and u is a complex-valued function. Recently, it was shown 
that (1) cannot be consistently derived starting from the underly-
ing water wave equations [12]. The following coupled KdV–CKdV 
(Complex KdV) model was suggested as an alternative with a con-
sistent derivation:

ut + 2βux + αuxxx = −2β(uv)x,

vt + βvx + βv vx + γ vxxx = −β(|u|2)x.
(2)

As above, v (u) is a real- (complex-) valued function and α, β and 
γ are real constants. The coefficients in the system above occur as 
they are by using the scaling symmetries of the system to mini-
mize the number of free parameters [12]. We examine whether or 
not the two systems (1) and (2) are integrable in a sense detailed 
below.
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A method for showing the nonintegrability of a system devel-
oped by Zakharov and Schulman [22,23] distinguishes between 
completely integrable systems and solvable systems. Completely in-
tegrable systems are those for which we can find action-angle 
variables and solvable equations are those which can be solved by 
the inverse scattering transform (IST) [1]. Since integrability is a 
feature of the equations and not of a particular solution, we may 
always assume that we are working in a neighborhood of a solu-
tion with a nondegenerate linearization.

The test for complete integrability has the following steps:

1. Any completely integrable Hamiltonian system may be written 
locally in action-angle variables.

2. A system in action-angle variables is equivalent to a collec-
tion of uncoupled harmonic oscillators, so its Hamiltonian is 
quadratic.

3. Near-identity normal-form transformations [20] can be used 
to reduce any Hamiltonian to quadratic as long as there are no 
obstructions from resonances.

4. Any obstruction in the above steps due to resonances implies 
the system is not completely integrable.

The normal-form transformation that removes n-th order terms 
from the Hamiltonian gives rise to a resonance manifold which de-
scribes the process of scattering p waves (p ∈ N) into n − p waves. 
For example, if a system admits two dispersion laws ω(1) and ω(2) , 
an n-th order resonance manifold is defined by
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with any combination of σ j ∈ {−1, 1} and � ∈ {1, 2}. Associated 
with each resonance manifold is an interaction coefficient func-
tion which describes the amplitude of the scattering process. If the 
coefficient function vanishes on the resonance manifold then the 
singularity of the normal form transformation is removable and the 
transformation is valid. If the coefficient function does not vanish 
on the resonance manifold, complete integrability is not possible 
but solvability may be.

The test for solvability has the following steps:

1. Every system solvable by the IST has an infinite hierarchy of 
equations solvable by the IST. The members of the hierarchy 
share conserved quantities.

2. By assumption, any equation solvable by the IST is linearizable 
with nondegenerate linearization, so each member of the hi-
erarchy has quadratic terms in the Hamiltonian, at least in the 
small amplitude limit.

3. Every member of the hierarchy has a linearly independent 
Hamiltonian, so the original system has infinitely many con-
served quantities with linearly independent quadratic terms 
(see e.g. [16]).

4. If there exist only finitely many conserved quantities with 
quadratic terms for our PDE, it is not solvable by the IST.

The method of Zakharov and Schulman begins by removing all 
higher-order nonresonant terms as above. Next an ansatz is made 
about the existence of an additional conserved quantity in a power 
series in terms of unknown amplitudes. Upon enforcing that the 
quantity is independent of t , resonance manifolds appear as above. 
However, in this case, the resonance manifold coefficient function 
is multiplied by another quantity:

n∑
j=1

σ j�
(�)(k j), (4)

where σ j and � are the same as in (3) and �(�) are the unknown 
quadratic amplitudes in the power series. If functions �(�) , linearly 
independent from the two relations defining the resonance mani-
fold, can be found such that (4) equals zero, then the manifold is 
called degenerate [18]. If any of the n-th order resonance mani-
folds are nondegenerate and have nonzero coefficient function, the 
constructed quantity is not conserved. The fact that another con-
served quantity with linearly independent quadratic terms cannot 
be constructed implies that the system must not be solvable by 
the IST.

Determining whether or not a resonance manifold is degenerate 
poses challenges. We use the theory of web geometry [6] to check 
degeneracy as described in Appendix A. In Sections 2 and 3 we 
examine the integrability of (1) and (2).

2. Coupled NLS & KdV model

The Hamiltonian for (1) on the whole line is

H =
∫ (

|ux|2 + 1

2
v2

x − α

2
|u|4 − γ

6
v3 − β|u|2 v

)
dx,

for the variables z = (u, iu∗, v) with non-canonical Poisson struc-
ture

J =
⎛
⎝ 0 1 0

−1 0 0
0 0 ∂x

⎞
⎠ ,

so that (1) is equivalent to zt = JδH/δz, where δ/δz denotes the 
variational gradient with respect to the components of z [5]. Here 
and throughout, integrals without bounds are to be interpreted as 
whole line integrals. This system admits two types of waves with 
dispersion relations ωk = k2 and �k = −k3. Here and throughout, 
k subscripts are indices, not partial derivatives. We introduce the 
Fourier transform,

u(x) = 1√
2π

∫
u(k)eikxdk = 1√

2π

∫
ukeikxdk. (5)

Applying the Fourier transform to u and v results in a Hamiltonian 
system for (uk, vk) with Hamiltonian

H(uk, vk) =
∫

k2uku∗
k dk +

∞∫
0

k2 vk v∗
k dk

− β√
2π

∫
u∗

1 v2u3δ1−2−3d123

− γ

6
√

2π

∫
v1 v2 v3δ123d123

− α

2(2π)

∫
u1u2u∗

3u∗
4δ12−3−4d1234, (6)

where we use the notation u j = uk j , d123 = dk1dk2dk3, u∗
k denotes 

the complex conjugate of uk , and δ12−3 = δ(k1 +k2 −k3) where δ(·)
is the Dirac-delta function. The integral with quadratic integrand 
in vk found in (6) is reduced to an integral on the half-line using 
the fact that v∗

k = v−k since v(x) is real. In Fourier variables, the 
dynamics are

iu̇k = δH

δu∗
k

, v̇k = ik
δH

δv∗
k

.

We introduce ak by

vk = |k|1/2(akθ−k + a∗
−kθk),

where

θk = θ(k) =
{

0, k < 0,

1, k ≥ 0,

is the Heaviside-function. The dynamics are

iu̇k = δH

δu∗
k

, iȧk = δH

δa∗
k

,

with

H(uk,ak) = H2(uk,ak) + H3(uk,ak) + H4(uk,ak),

H2(uk,ak) =
∫

ωkuku∗
k dk +

0∫
−∞

�kaka∗
k dk,

H3(uk,ak) =
∫

U123(a
∗
1a2a3 + a1a∗

2a∗
3)δ1−2−3d123

+
∫

V 123(u∗
1a2u3 + u1a∗

2u∗
3)δ1−2−3d123,

H4(uk,ak) =
∫

W1234u1u2u∗
3u∗

4δ12−3−4d1234,

U123 = − γ

2
√

2π
|k1k2k3|1/2 θ−1θ−2θ−3,

V 123 = − β√
2π

|k2|1/2 θ−2,

W1234 = − α

2(2π)
.

(7)
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