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Bessel functions play an important role for quantum states in spherical and cylindrical geometries. In 
cases of perfect confinement, the energy of Schrödinger and massless Dirac fermions is determined 
by the zeros and intersections of Bessel functions, respectively. In an external electric field, standard 
perturbation theory therefore expresses the polarizability as a sum over these zeros or intersections. Both 
non-relativistic and relativistic polarizabilities can be calculated analytically, however. Hence, by equating 
analytical expressions to perturbation expansions, several sum rules for the zeros and intersections of 
Bessel functions emerge.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Bessel functions are ubiquitous in mathematical physics [1,2]. In particular, they arise as solutions to wave equations in cylindrical 
and spherical geometries. In non-relativistic quantum mechanics, the solutions to the Schrödinger equation in cylinders and spheres are 
ordinary J p(x) and spherical jp(x) Bessel functions, respectively. Moreover, in the case of perfect (infinite barrier) confinement, the eigen-
values are squares of zeros λ of Bessel functions, i.e. arguments for which J p(λ) = 0, see e.g. [3,4]. In relativistic quantum mechanics, 
a related situation arises. Here, spinor eigenfunctions are expressed in terms of Bessel functions. In the general case, the boundary con-
dition is quite complicated [5]. For massless Dirac fermions, however, perfect confinement leads to a boundary condition in terms of 
intersections κ [6–8], i.e. arguments for which J p(κ) = ± J p+1(κ).

In many quantum mechanical problems, an approximate solution can be found using perturbation theory, which typically results in a 
sum-over-states expression for the desired quantity. Thus, in problems defined by a total Hamiltonian H = H0 + H1, where H1 is a “small” 
perturbation, an approximate solution is found by expanding the full wave function in the set formed by the unperturbed eigenstates ψ(0)

n

given by H0ψ
(0)
n = E(0)

n ψ
(0)
n . In certain cases, however, an exact solution to low order in H1 can be found using e.g. Dalgarno–Lewis [9] or 

logarithmic [10] perturbation theory. For instance, consider an inversion-symmetric system subjected to an odd-parity perturbation. The 
prototypical example of this would be an atom in the presence of a constant electric field oriented along the x-axis �F = F x̂ leading to 
a perturbation H1 = F x. By symmetry then, non-degenerate unperturbed states have definite parity and the first order correction to the 
eigenvalue vanishes. A first-order correction ψ(1)

n to the wave function exists, however, and is governed by the inhomogeneous equation 
(H0 − E(0)

n )ψ
(1)
n = −H1ψ

(0)
n obtained by collecting first order terms. For static perturbations, the first order wave function provides exact 

second order energies E(2)
n = 〈ψ(1)

n |H1|ψ(0)
n 〉. Similarly, perturbation by a time-harmonic electric field yields the frequency dependent 

polarizability of the system. The “exact” Dalgarno–Lewis and logarithmic perturbation theories [9,10] are based on finding exact solutions 
to the first order problem and, in turn, deriving exact second order quantities from such solutions.

The present work explores the possibility of finding new sum rules for Bessel function zeros λ and intersections κ by applying quantum 
mechanical perturbation theory. Several sum rules for the zeros are already known [4,11–16] but, to the knowledge of the present author, 
none exist for the intersections. We consider problems, in which energies and matrix elements of unperturbed states are expressible 
in terms of Bessel zeros or intersections in non-relativistic and relativistic theories, respectively. For problems that are, in fact, exactly 
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Fig. 1. Zeros of J0(x) and J1(x) as well as intersections, for which J0(x) = J1(x).

solvable, equating sum-over-states and exact solutions leads to new mathematical identities for λ and κ . Specifically, in the non-relativistic 
case, we consider the response of an electron in a D dimensional quantum well to a time-harmonic electric field. Here, the exact frequency 
(ω) dependent solution for the first order wave function and polarizability α(ω) is known [17]. By Taylor expanding α(ω) and examining 
the coefficients of different powers of ω, an infinite set of sum rules for the Bessel zeros are derived. In the relativistic case, we consider 
massless Dirac fermions confined to a two-dimensional disk. Here, perturbation by a static electric field leads to an exactly solvable 
problem for arbitrary angular momentum [18]. Hence, sum rules for intersections between consecutive Bessel function J p and J p+1 are 
found.

Below, we take λp,n to be the n-th positive zero of J p(x) with p real but not necessarily integer. Also, κp,n is the n-th intersection 
between J p(x) and J p+1(x) such that J p(κp,n) = J p+1(κp,n) for p integer. Both positive and negative intersections exist and we order 
them by the index n according to increasing absolute value. As an example, the cases p = 0, 1 are illustrated in Fig. 1.

2. Massive Schrödinger fermions

We start by considering the non-relativistic Schrödinger scenario for a D-dimensional sphere with perfect confinement. Physically, the 
Bessel function index p is related to the space dimension D by p = D/2 − 1. In the present section, we restrict attention to states with 
vanishing angular momentum. Using a radial coordinate r normalized by the particle radius a, the functions r−p J p(λp,nr) are then the 
(un-normalized) radial eigenfunctions of a D-dimensional quantum well [17]. In addition, the eigenvalues are E(0)

p,n = λ2
p,n .

A number of sum rules for λp,n involving only a single value of p are known including the result by Calogero [11]

∞∑
m=1
m �=n

λ2
p,n

λ2
p,m − λ2

p,n
= p + 1

2
, (1)

as well as sums with higher inverse powers (λ2
p,m − λ2

p,n)−2 and (λ2
p,m − λ2

p,n)−3 derived by Ahmed and Calogero [12]. These sum rules 
all concern the (difference between) squares of zeros λ2

p,n . Explicit expressions for sums of inverse even powers λ−2s
p,m with s integer are 

given by Elizalde et al. [4] and the relation to the zeta function was discussed by Actor and Bender [13]. In addition, a result by Baricz 
et al. [14] involves the fourth power

∞∑
m=1
m �=n

λ4
p,n

λ4
p,m − λ4

p,n
+ 1

2

∞∑
m=1

λ2
p,n

λ2
p,m + λ2

p,n
= p + 2

4
. (2)

All of these results are restricted to relations between zeros of a single Bessel function J p(λp,nr). In contrast, the results of the present 
work all involve zeros and intersections of two consecutive orders i.e. J p and J p+1. Afanasiev [15] derived a number of results for zeros 
in this case including the analogy of the Calogero sum rule

∞∑
m=1

λ2
p,n

λ2
p+1,m − λ2

p,n
= p + 1. (3)

While validity was claimed only for integer and half-integer p, this result as well as others in Ref. [15] appears to be valid for gen-
eral p. We will comment on the relation between the results of the present work and those of Ref. [15] below. Sums of the type ∑

m(λs
p,m J p+1(λp,m))−1 considered in Ref. [16] also relate J p and J p+1. Finally, we note that analytic sum rules for Bessel functions exist 

[19] but these appear to be of little use for zeros and intersections of these functions.
Perturbation by a time dependent electric field F cos(ωt) induces new frequency components in the wave function [17]. The induced 

dipole moment is calculated from the perturbed wave function and, in turn, the exact frequency dependent polarizability of the state 
(p, n) is given by [17]

αp,n(ω) = −4α0

ω2

{
1 + 2λ2

p,n

(p + 1)ω2

(√
λ2

p,n + ω J p(

√
λ2

p,n + ω)

J p+1(

√
λ2

p,n + ω)

+
√

λ2
p,n − ω J p(

√
λ2

p,n − ω)

J p+1(

√
λ2
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. (4)
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