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Conventional coherent states (CSs) are defined in various ways. For example, CS is defined as an infinite 
Poissonian expansion in Fock states, as displaced vacuum state, or as an eigenket of annihilation operator. 
In the infinite dimensional Hilbert space, these definitions are equivalent. However, these definitions are 
not equivalent for the finite dimensional systems. In this work, we present a comparative description of 
the lower- and higher-order nonclassical properties of the finite dimensional CSs which are also referred 
to as qudit CSs (QCSs). For the comparison, nonclassical properties of two types of QCSs are used: (i) non-
linear QCS produced by applying a truncated displacement operator on the vacuum and (ii) linear QCS 
produced by the Poissonian expansion in Fock states of the CS truncated at (d −1)-photon Fock state. The 
comparison is performed using a set of nonclassicality witnesses (e.g., higher order antibunching, higher 
order sub-Poissonian statistics, higher order squeezing, Agarwal–Tara parameter, Klyshko’s criterion) and 
a set of quantitative measures of nonclassicality (e.g., negativity potential, concurrence potential and an-
ticlassicality). The higher order nonclassicality witness have found to reveal the existence of higher order 
nonclassical properties of QCS for the first time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Coherent states drew considerable attention of the quantum 
optics and atom optics community for various reasons. For ex-
ample, a CS is known to be a quasi-classical state or the most 
classical state among the quantum states [1], and it has applica-
tions in almost all fields of physics [2,3]. In quantum optics, CS has 
been traditionally defined in various ways, such as displacement of 
vacuum state, eigenket of annihilation operator, or infinite Poisso-
nian superposition of Fock states [1,4]. In the infinite dimensional 
Hilbert space, these different definitions of CS are equivalent. How-
ever, in the finite dimensional Hilbert space, different definitions 
lead to different finite dimensional coherent states which are re-
ferred to as qudit coherent states [5]. In general, a qudit may be 
viewed as a d-dimensional quantum state that can be expanded in 
Fock-state (|n〉) basis as

|ψ〉d =
d−1∑
n=0

cn|n〉. (1)

E-mail address: anirban .pathak @jiit .ac .in (A. Pathak).

With the recent developments in quantum state engineering 
[6–9] and quantum computing and communication [see Ref. [10]
and references therein], production and manipulation of these 
types of quantum states have become very important. Further, in 
the recent past, several applications of nonclassicality [10–12] and 
a few experimental demonstrations of higher order nonclassicality 
[13–16] have been reported. Specifically, in the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO), squeezed vacuum state 
has been successfully used for the detection of the gravitational 
waves [17,18] by reducing the noise [19,20]. Squeezed state is also 
used in continuous variable quantum cryptography [11], teleporta-
tion of coherent state [21], etc. Further, a higher-order counterpart 
of squeezing- amplitude-squared squeezing, can be transformed to 
the standard lower-order squeezing using an interaction in which 
the square of the field amplitude is coupled to the amplitude 
of another field mode (e.g., second harmonic generation and cer-
tain kinds of four-wave mixing). Due to this, amplitude-squared 
squeezed states are useful in obtaining the noise reduction in the 
output of nonlinear optical devices [22]. Anti-bunching is used for 
characterizing single photon sources [23] which are essential for 
the realization of various schemes for secure quantum communica-
tion. Along the same line, the physical meaning of the higher-order 
antibunching (HOA) can be obtained by viewing it as a nonclassical 
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phenomenon that ensures that the probability of getting a bunch 
of n-photon is always less than that of getting a bunch of m photon 
in the radiation field if n > m [24]. In other word, the probability 
of getting the single photon is greater than the two or more pho-
tons which implies that a potential single photon source should 
satisfy the criterion of HOA [25]. Another higher-order nonclassi-
cal phenomenon is higher-order sub-Poissonian photon statistics 
(HOSPS). Earlier, it has been established that HOSPS is independent 
of HOA and can be observed in various physical systems. Further, 
HOSPS was found to be useful in detecting Hong–Mandel type 
higher-order squeezing (HOS) and amplitude-powered Hillery type 
HOS [26]. Here it may be noted that in the earlier studies pres-
ence of HOA or HOSPS has been observed in the absence of the 
corresponding lower-order phenomenon [25]. These observations 
motivated us to study HOA, HOSPS and HOS. In addition, entan-
gled states have been established to be useful for various quan-
tum information processing tasks ([10] and references therein). 
For example, entangled states are essential for quantum telepor-
tation [27], densecoding [28], quantum cryptography [29], etc. In 
this paper, we have not studied multi-mode (multi-partite) entan-
gled states, but it would be apt to note that every multi-partite 
entangled state are higher order nonclassical state and such states 
have many applications which further establishes the relevance of 
higher-order nonclassicality. In addition to the nonclassical states 
having the above mentioned applications, QCSs (being a finite su-
perposition of Fock states, which are always nonclassical) have also 
drawn considerable attention of the quantum optics community 
in its own merit. In fact, various aspects related to the properties 
(mostly nonclassical properties), possibilities of generation and po-
tential applications of finite dimensional optical states have been 
carefully investigated in last three decades [5,30–39] with specific 
attention to the QCSs [5,30–32,36]. Specifically, generation possi-
bilities of finite dimensional states of light have been discussed in 
Refs. [5,31,38,39] and their properties have been studied in Refs. [5,
32,35–37]. To obtain a QCS in particular or a finite dimensional 
Fock superposition state in general, we would require a mecha-
nism to truncate the infinite dimensional conventional Fock-state 
expansion of a driving field. In this context, a set of closely con-
nected and extremely interesting concepts have been developed. 
Such concepts include quantum scissors [5,9,40,41], which aims to 
truncate (cut the dimensions of) an infinite dimensional Hilbert 
space into a finite dimension, and photon blockades [42,43] which 
can be used as a tool for nonlinear optical-state truncation (i.e., 
as a nonlinear quantum scissors) [42]. However, to the best of our 
knowledge, no effort has yet been made to investigate the higher 
order nonclassical properties of QCSs. Motivated by the above facts, 
in addition to the conventional lower-order nonclassical properties, 
here we also aim to investigate higher order nonclassical proper-
ties of two QCSs. The idea of the first type of QCS which is usually 
referred to as the nonlinear QCS was developed by [30,32] using 
one of the definitions of the infinite dimensional coherent state. 
Specifically, this type of QCSs were prepared by applying a trun-
cated displacement operator on the vacuum state as follows

|α〉d = D̂d(α,α∗)|0〉 = exp(αâ†
d − α∗âd)|0〉, (2)

where the truncated displacement operator D̂d(α, α∗) operates on 
vacuum to generate QCS, and the qudit annihilation operator is 
âd = ∑d−1

n=1
√

n|n − 1〉〈n| and the corresponding commutation rela-

tion is [âd, â
†
d] = d|d − 1〉〈d − 1| which fundamentally differs from 

the standard creation and annihilation operators. The Fock-state 
expansion of the QCS in the form of Eq. (1) is given by [30]

|α〉d =
d−1∑
n=0

c(d)
n (α)|n〉, (3)

where the superposition coefficients are

c(d)
n (α) = f (d)

n

d−1∑
k=0

Hen(xk)

[Hed−1(xk)]2
exp(ixk|α|), (4)

with f (d)
n = (d−1)!

d (n!)−1/2 exp[in 
(
φ0 − π

2

)], and the modified Her-
mite polynomial Hen(x) is related to the Hermite polynomial Hn(x)

as Hen(x) = 2−n/2 Hn

(
x/

√
2
)

; xk ≡ x(d)

k is the k th root of Hed(x), 
and φ0 = arg(α). In the rest of the letter, we have chosen φ0 = 0. 
The complex parameter α (with φ0 = 0) is perfectly periodic in na-
ture for d = 2, 3 and almost periodic for d > 3. The periods of α
for d = 2 and 3 are T2 = π and T3 = 2π/

√
3, respectively, whereas 

the periods for d > 3 are 
√

4d + 2. Due the periodic nature of α
the photon number for the QCS |α〉 is also periodic in nature with 
maximum value |α|2 = d − 1 which corresponds to the photon 
number of the highest energy Fock state. In Ref. [5] and references 
therein, possible ways of generating this QCS and a set of its non-
classical properties have been discussed. However, no attention has 
yet been provided to the higher order nonclassical properties of 
this state.

The second type of QCSs studied here can be generated by trun-
cating the Fock space superposition of CS. This type of QCSs for a 
complex amplitude β are defined as [5,34,44]

|β〉d = N exp(βâ†
d)|0〉 = N

d−1∑
n=0

βn

√
n! |n〉, (5)

where N = 1/(
∑d−1

n=0
β2n

n! )1/2 is the normalization constant. This 
type of QCS is referred to as the linear QCS. The QCS |β〉d can be 
written in the form of Eq. (1) with

cd
n (β) = N

βn

√
n! . (6)

This QCS is referred to as linear QCS [5] and was studied earlier in 
Refs. [5,34,44]. In Ref. [5], it is explicitly shown that nonclassical 
properties (e.g., Wigner function and nonclassical volume) of lin-
ear QCS and nonlinear QCS are different. Here, we aim to extend 
the observation further by comparing the nonclassical properties of 
these QCSs using various witnesses and measures of nonclassicality 
with a specific focus on the witnesses of higher order nonclas-
sicality. The remaining part of the letter is organized as follows. 
In Section 2, we compare nonclassical characters of linear and 
nonlinear QCSs using a set of witnesses of nonclassicality which 
generally reflects the presence of higher order nonclassicality (ex-
cept Klyshko’s criterion), but does not provide any quantitative 
measure of nonclassicality. Specifically, in this section, we perform 
comparison of nonclassicality in QCSs using the criteria of HOA, 
HOSPS, HOS and Agarwal–Tara criterion and Klyshko’s criterion. In 
Section 3, we compare the amount of nonclassicality present in 
linear and nonlinear QCSs by using a set of quantitative measures 
of nonclassicality (e.g., concurrence potential, negativity potential, 
and anticlassicality). Finally, the letter is concluded in Section 4.

2. Comparison of nonclassicality in QCSs using the witnesses of 
nonclassicality

A quantum state is referred to as nonclassical if its Glauber Su-
darshan P -function cannot be written like a classical probability 
distribution. In other words, negative values of P -function implies 
that the state does not have classical analogue, and can be re-
ferred to as a nonclassical state. As there does not exist any general 
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