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Recently, it was argued that the binegativity might be a good quantifier of entanglement for two-qubit 
states. Like the concurrence and the negativity, the binegativity is also analytically computable quantifier 
for all two qubits. Based on numerical evidence, it was conjectured that it is a PPT (positive partial 
transposition) monotone and thus fulfills the criterion to be a good measure of entanglement. In this 
work, we investigate its behavior under noisy channels which indicate that the binegativity is decreasing 
monotonically with respect to increasing noise. We also find that the binegativity is closely connected to 
the negativity and has closed analytical form for arbitrary two qubits. Our study supports the conjecture 
that the binegativity is a monotone.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement is a fundamental non-classical feature 
of multiparticle quantum systems. It is a key resource for many 
quantum information processing tasks. Hence, characterizing (wit-
nessing as well as quantification) of entanglement is of immense 
importance.

In the last two decades, substantial amount of progress has 
been made in characterizing entanglement of two-qubit sys-
tems [1]. Although the entanglement structure of pure bipartite 
systems is well understood, much attention is required to fully 
understand it for mixed two-qubit states [1]. Quantification of 
entangled state is related with the inconvertibility between entan-
gled states under local operations and classical communications 
(LOCC), i.e., the quantities which do not increase under LOCC are 
the entanglement quantifiers [2–5]. Finding such measures are im-
portant for better understanding of the entangled states [2,6–8]. 
Out of many extant entanglement quantifiers, the concurrence [9,
10] and the negativity [11] are easily computable for two-qubit 
mixed states. Although, negativity and concurrence coincide for 
pure two qubit states, they produce different ordering for mixed 
states [12].

One breakthrough discovery in entanglement theory is Peres–
Horodecki criteria [13,14]. They found that using partial transpo-
sition operations one can detect entanglement in composite quan-
tum systems. Let us consider a bipartite system ρ , then its partial 
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transposition in one of the subsystems is defined as ρ� . The state 
satisfying ρ� ≥ 0 are called positive under partial transposition 
(PPT states). It is well known that all the PPT states of two qubits 
are separable states. The negativity captures the degree of viola-
tion of PPTness in the two-qubit states and it is an entanglement 
monotone [8]. Note that there exist no known physical interpre-
tation of partial transposition operations. The negativity can be 
expressed as

N(ρ) = 2Tr[ρ�−] =‖ ρ� ‖1 −1, (1)

where ‖ · ‖1 denotes trace-norm and we follow the notation ρ�− =
(ρ�)− to denote the negative component of ρ� . (It is defined in 
Eq. (3).)

In Ref. [15], authors discussed a computable quantity called ‘the 
binegativity’ which may be considered as a potential entanglement 
measure. The concept of binegativity was first introduced in the 
context of relative entropy of entanglement [17]. It was shown 
that if |ρ�− |�− ≥ 0, the asymptotic relative entropy of entangle-
ment with respect to PPT states does not exceed the so-called 
Rains bound [16,17], where |ρ| = √

ρ.ρ . This condition also guar-
antees that the PPT-entanglement cost for the exact preparation is 
given by the logarithmic negativity [18,19] which provides the op-
erational meaning to logarithmic negativity [20]. The binegativity 
for two-qubit state is given by [15]

N2(ρ) = Tr[ρ�−] + 2Tr[ρ�−�−]
= 1

2
N(ρ) + 2Tr[ρ�−�−], (2)
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where ρ�−�− = ((ρ�− )�)− . The binegativity has similar properties 
like negativity in two qubit systems while the former may not be a 
monotone under both LOCC and PPT channels [15,16,20,21]. On the 
basis of numerical evidence, it is conjectured that the binegativity 
behaves monotonically under both LOCC and PPT channels [15]. 
Based on this conjecture, the binegativity might be identified as a 
valid measure of entanglement for two qubit states. The binegativ-
ity has following properties [15]:

1. It is positive always and vanishes for two-qubit separable 
states.

2. It is invariant under local unitary operations.
3. For all two qubit states N2(ρ) ≤ N(ρ) ≤ C(ρ) and N2(ρ) =

N(ρ) if N(ρ) = C(ρ). In particular for all pure two qubit 
states, |ψ〉, N2(|ψ〉) = N(|ψ〉) = C(|ψ〉), where C denotes con-
currence.

The comparison between the negativity and the concurrence 
have been studied extensively and these measures give different 
order for the two qubit states, as there exist different states with 
equal concurrence but different negativity and vice versa [7,12,
22,23]. The binegativity also gives unique orderings of two-qubit 
states [15]. There exists some two qubit states with same negativ-
ity and same concurrence but have different values of binegativity. 
All these findings indicate that the binegativity may be a new 
member in the set of extant entanglement quantifier.

In this work, we study its behavior under noisy channels, 
specifically, under amplitude damping (AD), phase damping (PD) 
and depolarizing (DP) channels and find that it is decreasing 
monotonically with the increasing noise. We also observe that the 
behavior of the binegativity is quite similar under noisy channels. 
All these studies indicate that the bona fide measure, the binega-
tivity, might be a entanglement monotone.

In the next section, we establish a functional relation between 
the binegativity and the negativity. We also discuss the behavior 
of the binegativity under twirling operation. Then we calculate the 
binegativity for some class of states in section 3. In section 4, we 
study the behavior of the binegativity under the noisy channels. 
We conclude in the last section.

2. Binegativity – a LOCC monotone?

Although we do not have a proof for monotonicity of the bineg-
ativity under LOCC/PPT, we will address the issue to some extent. 
Mainly we will show that the binegativity contains a nontrivial 
term which may increase under some local operations but on aver-
age the binegativity is not increasing. Here we focus our numerical 
study only for twirling operations.

Binegativity of two qubit state ρ can explicitly be expressed in 
terms of negativity.

Lemma. The binegativity, N2(ρ) = 1
2 N(ρ)

[
1 + N(ρψ)

]
, where ρψ =

|ψ〉〈ψ | with |ψ〉 being the normalized eigen vector corresponding to the 
negative eigen value of ρ�.

Proof. It is well known that the partial transposition of any two 
qubit entangled state has exactly one negative eigenvalue, and the 
eigenstate (pure) corresponding to it must be an entangled state. 
Hence the negative component of ρ� is of the form

ρ�− = Tr
[
ρ�−]

ρψ, (3)

where ρψ = |ψ〉〈ψ | with |ψ〉 being the normalized eigen vector 
corresponding to the negative eigen value of ρ� . Now the form of 
ρ�−�− is given by

ρ�−�− = Tr
[
ρ�−]

ρ
�−
ψ . (4)

Hence, Tr
[
ρ�−�−] = 1

4 N(ρ)N(ρψ). Therefore the binegativity can 
be expressed as follows

N2(ρ) = 1

2
N(ρ)

[
1 + N(ρψ)

]
. (5)

Hence the proof. �
With the above expression, we can conclude that the binegativ-

ity and the negativity are related quantities. The binegativity and 
negativity coincide for two qubit pure states as in this case ρψ is a 
maximally entangled state. In fact, it is true for Werner states also.

We know that the negativity is a monotone under PPT op-
erations [8,16,20]. Having close resemblance with negativity, one 
might also expect that the binegativity is a monotone. However in 
Ref. [15], based on numerical evidence, it was conjectured that the 
binegativity might be a PPT monotone. Analytically, it is hard to 
prove the monotonicity of the binegativity because of the presence 
of the term like N(ρψ). For example, any two qubit entangled state 
can be transformed to a less entangled Werner state by twirling 
operations [24] and for the Werner state, ρψ is maximally entan-
gled i.e., N(ρψ) = 1. Therefore, although the overall entanglement 
is decreasing the contribution from the term, N(ρψ) may increase.

In [24], Werner showed that any state ρ can be transformed to 
a Werner state by applying the twirling operator:

ρW er =
∫

dU (U ⊗ U )ρ(U ⊗ U )†, (6)

where integral is performed with respect to Haar measure on 
the unitary group, U (d). This operation can transform any entan-
gled state to a less entangled Werner state. Therefore, under the 
twirling the binegativity should also decrease for two qubit case. 
We have numerically checked that the binegativity is indeed monotoni-
cally decreasing under twirling.

Now we will compute the binegativity for some class of states.

3. Binegativity of some class of states

Here we will compute the binegativity for some two qubit 
mixed states. For example, we will consider the following states:

Werner state: The Werner state is U ⊗ U invariant state. A two 
qubit Werner state is given by

ρW er = 1 − p

4
I4 + p|ψ−〉〈ψ−|, (7)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the singlet state and p ∈ [0, 1] is 

the classical mixing. The state is entangled for p > 1
3 . For this state 

the concurrence, the negativity and the binegativity are same and 
are equal to 3p−1

2 for p > 1
3 .

Bell diagonal states: The Bell diagonal states can be expressed in 
canonical form as

ρBell = 1

4
(I4 +

∑
i

ciσi ⊗ σi), (8)

where ci ∈ [−1, 1]. The state, ρBell is a valid density matrix if its 
eigen values λmn ≥ 0, where λmn = 1

4 [1 + (−1)mc1 − (−1)m+nc2 +
(−1)nc3] with m, n = 0, 1. For this state, the concurrence, the neg-
ativity and the binegativity are equal to 2λmax − 1, where λmax is 
the maximum eigenvalue of ρBell .

MEMs: The two qubit maximally entangled mixed states (MEMs) 
are the most entangled states for a given mixedness [25]. These 
states with concurrence C are
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