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The authors consider a stochastic model based on the interaction and phase coupling amongst wave 
components that are modified envelope soliton solutions to the nonlinear Schrödinger equation. 
A probabilistic study is carried out and the resulting findings are compared with ocean wave field 
observations and laboratory experimental results. The wave height probability distribution obtained 
from the model is found to match well with prior data in the large wave height region. From the 
eigenvalue spectrum obtained from the Inverse Scattering Transform, it is revealed that the deep-water 
wave groups move at a speed different from the linear group speed, which justifies the inclusion of 
phase correction to the envelope solitary wave components. It is determined that phase synchronization 
amongst elementary solitary wave components can be critical for the formation of extreme waves in 
unidirectional sea states.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Rogue waves have been described as waves that appear from 
nowhere and leave without a trace [1]. These extreme energy con-
centrations pose severe threats to maritime voyages and offshore 
operations [2]. Considerable work has been done on modeling and 
predicting rogue waves [3,4]. Related efforts include the analyti-
cal work based on modulational instability (MI) [5,6], experiments 
and field measurements on wave statistical properties, such as 
kurtosis and skewness of the underlying probability density func-
tion [7], and numerical computations of different sea state param-
eters [8]. Broadly speaking, there are different mechanisms that 
can be used to explain the occurrence of extreme waves, including 
nonlinear focusing, dispersive focusing, atmospheric forcing and so 
on (e.g., the review papers by Dysthe et al. [1] and Kharif and 
Pelinovsky [2]). Until now, it is widely recognized that the unidi-
rectional sea state often favors extreme wave statistics, as claimed 
in most of the studies [9–12].

The modulational instability (MI) is a well-recognized mech-
anism for generating very large waves due to energy transfer 
between different modes. A mathematical model for explaining 
MI has been developed by Shabat and Zakharov [6]. This model, 
known as the nonlinear Schrödinger equation (NLSE), has been 
used to study the interplay between nonlinearity and dispersion 
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of water waves. NLSE is integrable in 1D + 1 and can be solved by 
using the Inverse Scattering Transform (IST). Several analytical so-
lutions, such as solitons and breathers, have been regarded as the 
prototypes of rogue waves. However, there is no broad agreement 
on which solution is the best candidate for a rogue wave, when 
considering different spatial and temporal periodicities [13–16].

The existence of steep solitary wave groups has been confirmed 
in laboratories and examined under different numerical frame-
works. When transverse effect is insignificant, weakly nonlinear 
wave groups do exhibit structural stability without noticeable dis-
tortion in the event of collisions and these groups can propagate 
a long distance. Whereas in the case of large wave steepness; that 
is, relatively steep solitary groups, dispersion outweighs the self-
focusing effect along the propagation direction. However, it has 
been confirmed through experiments that the envelope soliton so-
lution to NLSE provides a rather accurate approximation to the 
long-time evolution of steep intense solitary wave groups up to 
wave steepness of 0.3 [17].

Although a single steep solitary wave group can create a freak 
wave event, interactions amongst multiple moderate solitary wave 
groups improves the likelihood of extreme waves significantly, 
leading to a heavy tail distribution in the wave height statistics. 
Soliton synchronization has been proved as an effective way to 
generate localized high-amplitude waves in the system governed 
by the NLSE [18] and the modified KdV framework [19]. In the 
former framework, it has been indicated with the Darboux trans-
formation method that the solitons can be synchronized to form a 
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peak at the focusing point with the magnitude equal to that of the 
sum of interacting solitons [20,21].

The effect of multiple soliton interactions strongly depends on 
the details of the collision process. Although an intersection of 
soliton trajectories is necessary but it is not sufficient for the ef-
ficient focusing. When approaching the focusing point, the train 
of solitons should be positioned with descending group veloci-
ties, which allow farther solitons to overtake the nearer ones. In 
addition, they should have alternating phases [19]. By simply set-
ting position and phases to be equal amongst soliton trains, one 
will not have amplitude synchronization since the nonlinear in-
teraction process makes the trajectory of each soliton bend before 
reaching the focusing point [18]. Although the exact synchroniza-
tion of amplitude requires further details, there are two essential 
ingredients for soliton synchronization, phase coherence during 
the synchronization and different group velocities for soliton colli-
sion [22,23].

Sea waves are an example of inherently stochastic waves and 
they are often modeled as a combination of quasi-sinusoidal waves 
with independent random uniformly distributed phases, known as 
Gaussian sea, following earlier work [24]. Onorato et al. [11,12]
have performed three-dimensional random waves water basin ex-
periments to study the free surface profile probability distributions 
based on the JONSWAP spectrum. Different degrees of directional-
ity have been considered to study the effects of wave crest length. 
The results indicate that the probability distributions of the surface 
elevation of unidirectional waves deviate most from the Gaussian 
or near-Gaussian sea and the occurrence of rogue waves has in-
creased significantly compared to short-crest sea. Gramstad and 
Trulsen [25] have claimed a similar finding that more rogue waves 
are generated in unidirectional seas.

Here, the authors focus on understanding how the introduction 
of phase interference and wave train modulation can enhance the 
possibility of extreme waves formations in the unidirectional sea 
states. The rest of the paper is organized as follows. In the next 
section, they describe the model construction as an extension of 
the envelope solitary wave solution to NLSE. Following that, in 
Section 3, the authors present the results obtained through the 
application of this model to North Sea Draupner events to demon-
strate the validity of the described methodology. Statistical results 
obtained from large-scale simulations are also discussed in support 
of the proposed model. Finally, concluding remarks are collected 
and presented together in Section 4.

2. Solitary wave model approximation

2.1. Nonlinear Schrödinger equation and fundamental solitary wave 
solution

The leading-order theory for the description of unidirectional 
gravity water wave nonlinear focusing is the classic cubic NLSE 
written for the complex wave envelope A(x, t) as

At + cg Ax + i

4
cgk−1

0 Axx + i

2
ω0k2

0|A|2 A = 0. (1)

Here, ω0 and k0 are dominant wave frequency and wavenumber, 
respectively, and cg = ω0/2k0 is the linear group velocity in deep 
water, with the dispersion relation

ω0 = √
gk0. (2)

Both the surface elevation η(x, t) = Re{A(x, t)eik0x−iw0t} and ve-
locity potential φ(x, z, t) are determined by the complex-valued 
function A(x, t). The η and φ fields can be computed with high 
accuracy by including higher order nonlinear terms in NLSE, such 

as the Dysthe equation. The fundamental envelope soliton, a solu-
tion to equation (1), is of the form [26]

A = a0sech[√2a0k2
0(x − cgt)]e−ia2

0k2
0ω0t/4, (3)

where a0 is the soliton amplitude. The envelope soliton given by 
equation (3) is propagated with the linear group velocity cg . Dif-
ferent from transient wave groups, the envelope soliton consists of 
coherent wave harmonics that prevent the dispersion of the wave 
group. The Fourier spectrum of wave group (3) may be obtained 
as

Â(k, t) =
+∞∫

−∞
A(x, t)eikxdx = F (k)eiξ(t), (4)

F (k) = π A0√
2k2

0a0
sinh(

πk

2
√

(2)k2
0a0

), (5)

ξ(t) = −kcgt − k2
0a2

0ω0t

4
. (6)

Hence, all Fourier modes have the same phases and the Fourier 
amplitudes F (k) do not evolve in time for a single envelope 
soliton. However, within the framework of NLSE, envelope soli-
tons (3) may interact amongst each other, and also with other 
quasi-linear waves. It is noted that equation (1) has high-order 
solutions such as the Peregrine soliton, Kuznetsov–Ma breather, 
and Akhmediev breather [27], which are the results of interac-
tions involving envelope solitons (3) with background waves [28]. 
These high-order breathers have different characteristic group ve-
locity than cg and they are defined by the IST spectrum [28,23]. 
Next, the authors revisit the IST to examine the determination of 
the spectrum from the complex modulation amplitude based on 
NLSE.

2.2. Inverse scattering transform

The authors consider the non-dimensional NLSE equation of the 
form

i At + Axx + 2|A|2 A = 0. (7)

This equation satisfies the compatibility condition of the following 
system of linear equations:

Bx =
( −iλ A

−A∗ iλ

)
B, (8)

Bt =
(

−2iλ2 + i|A|2 i Ax + 2λA

−i A∗
x − 2λA∗ 2iλ2 − i|A|2

)
B, (9)

where λ is a spectral parameter, B(x, t, λ) is a vector or matrix 
function, and A∗ represents the complex conjugate of A. In fact, if 
one differentiates equations (8) and (9) with respect to t and x re-
spectively, one can find that in order to force the right hand side 
to be equal to each other, the complex envelope function A(x, t)
must satisfy equation (7). In other words, equation (8) and (9) are 
compatible with each other on the equation condition (7). The ma-
trix operators in the above linear systems are called the Lax pair 
of equation (7) and these operators were first studied by Zakharov 
and Shabat [6]. Equation (8) is called the Zakharov–Shabat (ZS) 
scattering problem. The parameter λ, which lies in the complex 
plane, is such that λ = λR + iλI . Then, the λI can be interpreted as 
having the information about the amplitude of the unstable mode 
and λR can be interpreted as referring to the group velocity rel-
ative to the linear group velocity, which corresponds to λ located 
on the imaginary axis.
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