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The dynamic characteristic of macromolecule is mainly subject to the fluctuation of rate constant and 
this phenomenon is usually considered as dynamic disorder (DD). In order to detect the DD nature in 
the bio-molecule system more accurately, here we propose a theoretical framework based on the two-
dimensional (2D) free-energy landscape including the pulling coordinate and other slow conformational 
variables. The generalized Langevin equation (GLE) with fractional Gaussian noise (fGn) and the power-
law memory kernel are used on this landscape for the research. The transition rate, which depends on 
both intrinsic barrier height and noise strength ratio, has been analyzed under the condition of external 
force. The particular discrepancies were investigated between the kinetics of the transitions with and 
without DD. We find that the discrepancies relied on the barrier height and the noise strength ratio. 
Taken together, our study illustrates the importance of the DD characteristics, which should be taken into 
account during the research into the single-molecule pulling experiments.

© 2018 Published by Elsevier B.V.

1. Introduction

Single-molecule pulling experiment provides a powerful tool to 
directly probe the kinetic information of the molecules during key 
processes in the living cell. This method has been used to study 
numerous fundamental biological problems widely distributed in 
the molecular system, from the mechanical properties of protein 
unfolding [1–3] and ligand dissociation [4,5] to the molecular dy-
namics during enzymatic catalysis [6,7]. Pulling experiments un-
der the constant speed or constant force can directly measure the 
force-dependent rate coefficient k(F ) to detect the dynamic char-
acteristics through monitoring the response of the bio-molecule by 
external pulling force F .

To accurately extract the kinetic information of molecular tran-
sitions, it is necessary to establish a reliable theory for irreversible 
transition rate under the condition of pulling force. To this end, 
two approaches have been widely used so far. One is the cel-
ebrated phenomenological Bell’s formula [8] with exponential of 
F according to kBell(F ) = k0 exp(β F x‡), β−1 = kB T with kB be-
ing Boltzmann’s constant and T being the absolute temperature. 
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The intrinsic reaction rate constant k0 and the distance between 
the free-energy minimum and the transition-state x‡ are two basic 
parameters in the absence of applied force. However, the Bell’s for-
mula is only suitable for the conditions of low external force [9]. 
Kramers’s theory [10] based on the generalized Langevin equation 
(GLE) [11,12] is another famous approach, which provides more 
information than Bell’s formula. Besides k0 and x‡, it also includes 
the free-energy of activation �G‡. Especially, connected with frac-
tional Gaussian noise (fGn) [13], this theory identified the dynamic 
disorder (DD) [14–16]. Compared with Zwabzig’s approach [17]
connected with Bell’s rate formula, which assumes that fluctuat-
ing rate is dependent on time-varying control parameters, the GLE 
with fGn clearly reveals the conformational fluctuation caused by 
DD under the one-dimension (1D) condition.

However, the force-induced molecular rupture involves a huge 
number of degrees of freedom originated from both the pulling 
molecule and the surrounding environments. Theory dependent on 
the 1D assumption [18] means that the dynamic change along the 
pulling coordinate named x is slower than that along any other 
coordinate, which may not be the case in general [9,19]. It is nec-
essary to note that even slower coordinate Q , for example the 
local conformational change, is decided by the dihedral angles [19,
20] and other parameters. Therefore, it is important to propose a 
theoretical analysis based on a two-dimensional (2D) free-energy 
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landscape [21,22]. In the theory, the freedom Q not only can be as 
slow as change in the pulling direction x, but also represents the 
rate-limiting step of protein unfolding [23]. In the present study, 
the 2D free-energy landscape has been established to study the ki-
netic characteristics.

The 2D model is usually applied with the white noise condi-
tion [24] based on the normal diffusion assumption and cannot 
account for DD characteristics caused by sub-diffusion that ex-
hibits non-Markovian nature of the conformational changes. The 
sub-diffusion is a common phenomenon present in macromolecule 
pulling experiments [25]. The DD effect can be expressed by the 
non-exponential decay [26] of the waiting time. The GLE-fGn has 
already been used to analyze the immigration rate and the waiting 
time under external force [15,16] in our investigations. The key 
nature of the fGn is the power-law memory kernel according to 
K (t) ∼ |t|−γ . In this formula, the range 0 < γ < 1 must correspond 
to the sub-diffusive behavior [27] and the DD effects have been 
analyzed. However, the fGn has not yet been taken into the mul-
tidimensional landscape [28] and the DD effect also has not been 
revealed in this situation [29].

Motivated by the above considerations, we aim to propose a 
framework based on 2D energy profile [19] involving both fGn and 
DD effect [30]. We analyze the transition rate under the pulling 
force and investigate how it changes with the barrier height �G‡

and the noise strength ratio αk . The formula of the ratio is writ-
ten as αk = ηQ /ηx , ηQ and ηx represent the noise strength in the 
Q and x dimensions respectively [31]. In order to extract DD char-
acteristics, it is necessary to introduce two power-law functions to 
form the kernel matrix which can present the properties of both 
x and Q noises. The results for both systems with and without 
DD are calculated and our results suggest that DD is an important 
factor of the dynamics of molecular transition.

2. Model and method

In our framework, the dynamic of the freedom Q other than 
the extension x is essential for the rupture kinetics. Under the 
condition of the mechanical work −F x, the free energy of the 
molecular system is the sum of the intrinsic energy called G(x, Q )

and the external force F takes the role in the dimension x. The 
2D free-energy landscape model is established including the effect 
from both pulling coordinate x and changes of the dihedral an-
gle Q :

G(x, Q ) = G0(Q ) + k(Q )

2

[
x − x0(Q )

]2 − F x (1)

In the absence force condition, the curve in x coordination is as-
sumed to reflect the distance between the bound state and the 
transition state. The curve in Q coordination is harmonic with 
the curvature k(Q ) and the minimum at x0(Q ). k(Q ) represents 
the statistical dispersion in the values of the molecular extension 
at the coordinate of the Q and also means the stiffness of the 
molecule itself. x0(Q ) is the most probable value of the extension 
at a given Q without any pulling force. G0(Q ) is a linear-cubic 
function of the Q .

k(Q ) = k0∪
1 − �k‡/k0∪

1 − (Q /�Q ‡)(�k‡/k0∪)
(2)
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]
+ �x‡ (3)

G0(Q ) = 2�G‡

(�Q ‡)3
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Q − �Q ‡

2

]3

− 3�G‡

2�Q ‡

[
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2

]
(4)

From Eq. (2) to Eq. (4), �x‡ is the distance along x between tran-
sition and bound states and �k‡ represents the difference of the 

molecular stiffness in the bound (k0∪) and the transition states at 
F = 0. The x0(Q ) is specified by ε and ε = �x‡/(�Q ‡)2.

The GLE with two coordinate effects of x and Q is given:

∂G(x)

∂x
= −

t∫
0

dt′ K
(
t − t′) dx

dt′ + θ(t) (5)

In this equation, the 2D free-energy landscape model is G(x) =
G(x, Q ) and the matrix x = (x, Q ) just contains two different free-
doms, the extension effect from x coordinate and the change of an-
gles from Q variable. The random force matrix θ(t) = (θx(t), θQ (t))
represents surrounding random forces which can affect both x and 
Q coordinates. The power-law memory kernel matrix K (t) is re-
lated to θ(t) by fluctuation–dissipation theorem [32]:〈
θ(t) · θ T (

t′)〉 = kB T K
(
t − t′) (6)

θ T (t) is the transposed matrix of the θ(t) and the 〈·〉 means the 
trajectory averaging. Compared with the white noise condition, it 
would be better to reveal the DD characteristic if we assume that 
both coordinates reflect the fGn feature in the kernel matrix K (t):

K (t) =
(

ηx(2 − γ )(1 − γ )|t|−γ 0
0 ηQ (2 − γ )(1 − γ )|t|−γ

)
(7)

This kernel matrix has the symmetrical characteristic with the 
power-law functions of time t in these two coordinates and only 
the noise strength ηx is different from ηQ . The γ in Eq. (7) is 
a key factor. If γ tends to 1, power-law functions behaves as the 
δ(t) functions and the Eq. (5) has to be reduced to the conven-
tional Langevin equation with the WN condition. In this condition, 
the reduced formula is one kind of basic model used by Y. Suzuki 
and O.K. Dudko’s theory [19]. If γ = 0.5, the kernel matrix is time-
dependent, belonging to fGn condition and used in our model. It 
is proved that this kind of power-law function has been observed 
by single molecule pulling experiments [25] and it can be inferred 
from molecular dynamic (MD) simulation [33].

By applying the Kramers’s theory [10], the migration rate equa-
tion with fGn in the condition of 2D free-energy landscape is de-
duced from Eq. (5):

k(t, F ) = Λ+(t, F )

2π

√
det H∪(F )

|det H∩(F )| exp

[
−�G‡

kB T

]
(8)

In Eq. (8), �G‡ = G(x∩(F ), Q ∩(F )) − G(x∪(F ), Q ∪(F )) is the height 
of the activation barrier with the pulling force. Λ+(t, F ) can be 
expressed by the Mittag–Leffler function:

Λ+(t, F ) = E ′
γ (|λ−(F )|tγ )

Eγ (|λ−(F )|tγ )
(9)

In Eq. (9), E ′
γ (|λ−(F )|tγ ) is the reciprocal value of Eγ (|λ−(F )|tγ ). 

λ−(F ) is the negative root of the function det[sI + Ǩ
−1

(s)H∩(F )]−1

= 0 and then, Ǩ (s) is the Laplace transform of the fraction kernel 
matrix K (t). H∪/∩(F ) is the Hessian matrix of G(x, Q ) at the tran-
sition and bound states:

H∪/∩(F ) =
(

G∪/∩
xx (F ) G∪/∩

xQ (F )

G∪/∩
Q x (F ) G∪/∩

Q Q (F )

)
(10)

Because of adiabatic approximation [11], the survival proba-
bility S(t) is defined that the given particle has not crossed the 
barrier up to time t . It follows the first order rate equation: 
dS(t, F )/dt = −k(t, F )S(t, F ). Thus:
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