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For part I see DOI: 10 .1016 /j .physleta .2018 .02 .006. Size and density dependent quantum oscillations ap-
pear in Fermi gases under strong confinement and degeneracy conditions. We provide a universal recipe 
that explicitly separates oscillatory regime from non-oscillatory (stationary) one. A phase diagram rep-
resenting stationary and oscillatory regimes on degeneracy-confinement space is proposed. Analytical 
expressions of phase transition interfaces are derived. The critical point, which separates entirely sta-
tionary and oscillatory regions, is determined and its dependencies on aspect ratios are examined for 
anisometric domains. Accuracy of the half-vicinity model and the phase diagram are verified through the 
quantum oscillations in electronic heat capacity and its ratio to entropy.
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1. Introduction

This article constitutes the second part of a two-part article. In 
the first part of this paper [1], to which we shall refer as “Article I” 
hereafter, we have built an analytical model called half-vicinity 
model (HVM) for the prediction and accurate calculation of size 
and density dependent oscillations in thermodynamic and trans-
port properties of confined and degenerate Fermi gases. Analytical 
construction, derivations and detailed examination of HVM can be 
found in Article I (Ref. [1]).

In this part, we construct a phase diagram for quantum oscil-
lations. The phase diagram is established on HVM and considers 
half-vicinity (HV) states, off-half-vicinity (OHV) states and the bal-
ance conditions between them. Although different types of phase 
diagrams have been proposed under quantum oscillation regime in 
literature [2–4], a phase diagram separating oscillatory and station-
ary regimes has never been proposed for any dispersion relation.

The proposed phase diagram for systems having quadratic dis-
persion relation is used to predict size and density dependent 
quantum oscillations in Fermi systems. Moreover, it can easily be 
modified for systems having linear ones also [5–33].

In the following section of this paper, a phase diagram of quan-
tum oscillations is established and phase transition interfaces be-
tween stationary (classical, continuous) and oscillatory (quantum, 
discrete) regimes are analytically given for 1D, 2D and 3D cases. 
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Critical confinement and degeneracy values, which separates en-
tirely stationary and oscillatory regions, are also determined by 
considering their aspect ratio dependencies. In Sec. 3, results of ex-
act (definitional expressions based on infinite sums) and HVMs are 
compared for size and density dependent oscillations in the elec-
tronic specific heat capacity of strongly degenerate and confined 
ideal Fermi gases. Finally, broken equivalence of entropy–heat ca-
pacity in quantum degenerate limit of ideal Fermi gases is also 
well predicted by HVM.

2. A phase diagram for quantum oscillations: transition from 
classical to quantum behavior

Occupancy variance function is given in Article I as
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where f = gs/ [exp(−� + ε̃) + 1] is Fermi–Dirac distribution func-
tion, gs is spin factor, � = μ/(kB T ) is dimensionless chemical 
potential and dimensionless energy eigenvalues are denoted as 
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gular confinement domain, where in is quantum state variable for 
a particular direction n = {1, 2, · · · , d}. The confinement parameter 
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Total occupancy variance (TOV) in its exact summation form is 
written as
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This function can be approximated in continuum and degenerate 
limit as

�2
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d/2

2dα1 · · ·αd

�(d−2)/2

	(d/2)
. (3)

Two equations below are from the Article I where the methodology 
of HVM is constructed. In HVM, TOV is derived as
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In continuum limit, it is approximated by
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∼= tanh
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where δε̃ is the thickness of half-vicinity shell in dimensionless 
energy space (for its expressions see Eqs. (10a), (11) and Table I 
from Article I).

HVM takes the discreteness of quantum states into account 
and allows us to accurately calculate thermodynamic and trans-
port properties exhibiting size and density dependent quantum 
oscillations without using infinite summations. In addition to that, 
HVM can accurately estimate where the transition from classical 
behavior to quantum behavior starts, in the framework of quan-
tum oscillations.

The states contributing to TOV consist of HV states and OHV 
states (i.e., �2

D = �2
H V +�2

O H V ). HV states are responsible from the 
oscillatory part of TOV, whereas OHV states represent the station-
ary part, see Article I. They constitute two competing parts of TOV. 
Domination of contributions of HV states over OHV ones leads to 
oscillations and vice versa. Hence, by considering �2

H V = �2
O H V

balance, we can compare contributions of HV states and OHV 
states to define a universal (material independent) recipe for the 
separation of stationary regime (SR) from oscillatory regime (OR). 
According to the recipe, when �2

H V < �2
O H V , oscillations disap-

pear (SR) and on the opposite condition �2
H V > �2

O H V , oscillations 
reveal (OR). Since �2

O H V = �2
D − �2

H V , SR–OR transition can be 
quantified as the balance of the contributions of HV and OHV 
states (�H V = �O H V ) by �2

D = 2�2
H V .

Since the transition is not sharp but smooth, we can safely use 
analytical expressions of TOV, instead of their exact expressions, 
to find an analytical expression for SR–OR separation. From the 
balance condition between contributions of HV and OHV states as 
well as Eq. (5), we can determine the following analytical condition 
for the transition between SR and OR,

�2
C A = 2�2

H V C ⇒ 1 = 2 tanh (δε̃/4) ⇒ δε̃ = 2 ln 3. (6)

As is seen from red curve in Fig. 3 in Article I, balance con-
dition quantified in Eq. (6) clearly gives the SR–OR separation. 
By decreasing confinement or degeneracy, the number of states 
around Fermi level increases, contributions of OHV states become 
also appreciable and their contributions make oscillation ampli-
tude smaller. The more number of states around Fermi level, the 
smaller oscillation amplitude. When contributions of OHV states 
exceeds that of HV states, oscillations disappear.

To complete the construction of phase diagram, it is necessary 
to check also the number of particles, (N), inside the system, since 
we are dealing with extremely confined systems having relatively 
low number of particles. For statistical representations there has 
to be sufficiently large number of particles inside the system. Nev-
ertheless, the physically meaningful region in a phase diagram can 
be stated by the condition N ≥ 1. Full list of recipes and conditions 
to establish the phase diagram is given in Table I.

According to the recipes and conditions given in Table I, phase 
diagrams of quantum oscillations in degeneracy-confinement space 

Table I
Recipes and conditions for the construction of the 
phase diagram of quantum oscillations.

Region Recipe Condition

OR �2
H V > �2

O H V δε̃ > 2 ln 3
SR �2

H V < �2
O H V δε̃ < 2 ln 3

Unphysical N < 1
∑∞

i1,...,id=1 f < 1

Fig. 1. (Color online.) A phase diagram for quantum oscillations on degeneracy-
confinement space in case of isometric 3D confinement domains. δε̃ = 2 ln 3 condi-
tion defines the boundary between stationary (classical) and oscillatory (quantum) 
regimes. Blue dot represents the critical point in the phase diagram.

Table II
Conditions and regions of the phase diagram.

Conditions Regions

α < α∗ , � < �∗ , (check N > 1) Entirely SR
α < α∗ , � > �∗ Crossover region
α > α∗ , � > �∗ , (check N > 1) Entirely OR
α > α∗ , � < �∗ Unphysical region

for various dimensions can be determined. For isometric 3D do-
mains, the phase diagram is constructed and given in Fig. 1. Solid-
black curves represent interfaces defined by the conditions in Ta-
ble I. δε̃ = 2 ln 3 condition, representing the balance of HV and OHV 
states, separates OR and SR. As long as degeneracy is sufficiently 
high, it’s possible to control the quantum oscillations in thermo-
dynamic and transport quantities by controlling the confinement 
parameter.

Intersection of SR–OR interface curve with N = 1 curve denotes 
the critical point which is represented by blue dot in Fig. 1. Criti-
cal value of the confinement parameter at this point is α3D∗ = 0.78
and the corresponding degeneracy value is �3D∗ = 0.88. These val-
ues are universal for isometric rectangular confinement domains. 
For confinement values below α∗ , existence of oscillations can be 
controlled and they can even be suppressed by decreasing degen-
eracy (through density or temperature). Similarly, for degeneracy 
values higher than �∗ , existence of oscillations can be controlled 
by changing confinement. This region defined by {� > �∗, α < α∗}
is the crossover region restricted by dashed lines in the phase di-
agram. On the contrary, for higher confinement values than α∗ , 
quantum oscillations cannot be suppressed and the region is called 
entirely oscillatory region. Below the critical degeneracy values, 
system does not exhibit oscillatory behaviors regardless of the val-
ues of confinements. Hence, this critical point is used to define 
different regions (crossover region, entirely OR and entirely SR). 
Regimes on phase diagram and corresponding conditions are sum-
marized in Table II.

Although the phase diagram in Fig. 1 represents only isometric 
3D domain, the form of the phase diagrams for 1D and isomet-
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