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a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 January 2018
Received in revised form 27 March 2018
Accepted 17 April 2018
Available online 21 April 2018
Communicated by M.G.A. Paris

Keywords:
Quantum communication
Deterministic classical information 
transmission

We consider the scenario of deterministic classical information transmission between multiple senders 
and a single receiver, when they a priori share a multipartite quantum state – an attempt towards 
building a deterministic dense coding network. Specifically, we prove that in the case of two or three 
senders and a single receiver, generalized Greenberger–Horne–Zeilinger (gGHZ) states are not beneficial 
for sending classical information deterministically beyond the classical limit, except when the shared 
state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with 
specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending 
the information in deterministic dense coding. Interestingly however, numerical simulations in the three-
qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense 
codeable is higher than that of states from the W-class.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The rapid development of quantum information science is 
largely due to discoveries of communication protocols [1–6] by us-
ing entangled quantum states [7]. Their successful realizations in 
physical systems like photons [8], ions [9], superconducting qubits 
[10], nuclear magnetic resonance (NMR) [11] etc. also make the 
field attractive. When a priori an entangled state is shared be-
tween sender(s) and receiver(s), tasks of communication protocols 
can broadly be classified in two categories – classical information 
[3,1,2] and quantum state transfer [4]. The former, without the se-
curity issue during the transmission of information, is known as 
the quantum dense coding protocol (DC) [3] which is the main 
theme of this rapid communication. The quantum DC protocol 
has been experimentally implemented with photons [12] and later 
with NMR [13], trapped ions [14], and also in continuous variable 
systems [15].

The original DC protocol describes the advantage to send the 
information of N possible outcomes of a classical random variable, 
say X , when encoded in a quantum state from a single sender (Al-
ice) to a single receiver (Bob). Bennett and Wiesner [3] have shown 
that if Alice and Bob share the maximally entangled singlet state, 
|ψ−

AB〉 = 1√
2
(|01〉 − |10〉), Alice can transform the state into four 

possible orthogonal states by acting local unitaries on her part and 
can send log2 4 = 2 bits of classical information by sending only a 
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single spin-1/2 particle, i.e., a two-dimensional system. If the ini-
tially shared state is |φAB 〉 = a|01〉 + b|10〉, where a, b ∈ C with C
being the set of complex numbers and |a|2 + |b|2 = 1 with a �= b
(both non-zero), or an arbitrary state, ρAB , Alice can no longer cre-
ate orthogonal output states by performing unitaries and hence the 
receiver gets less information. In the asymptotic limit, when many 
copies of ρAB are provided, the amount of maximal classical in-
formation transferred on an average is the dense coding capacity 
(C ) [16,17], given by C(ρAB) = log2 dA + max{S(ρB) − S(ρAB), 0}, 
where dA is the dimension of the Hilbert space of the sender’s 
subsystem, S(σ ) = −tr(σ log2 σ) is the von Neumann entropy of 
σ , and ρB = trA(ρAB) is the reduced density matrix of the re-
ceiver’s subsystem. The first term is the classical limit for infor-
mation transfer, while the remaining terms quantify the quantum 
advantage in DC. Clearly, in the case of pure states, the entangle-
ment content of the shared state [18] and the quantum advantage 
of DC capacity is equal.

Instead of considering an asymptotic way of transferring clas-
sical bits which also is probabilistic in nature, we deal with a 
DC scheme in a single-copy level, using a shared non-maximally 
entangled pure state, where Alice encodes the information by per-
forming unitary operations on her part in such a way that upon 
receiving the entire system, Bob can always distinguish the out-
put states without any error, i.e., deterministically, by performing 
global measurements. Such protocol for a single sender and a sin-
gle receiver was introduced in Ref. [19], and referred to as the 
deterministic dense coding (DDC) protocol [20]. Since the protocol 
is at the single-copy level, it is also important from an experi-
mental point of view [21]. In DDC, Alice’s aim is to find unitary 
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operators, {U A
i }, such that mutually orthogonal states can be cre-

ated by applying {U A
i } on her part of |ψAB〉, thereby distinguishing 

them by Bob using global measurements. If |ψAB 〉 ∈C
d ⊗C

d , where 
d is the dimension of each subsystem, the classical limit of the 
alphabet-size of the message is d, while |ψAB 〉 is said to be deter-
ministically dense codeable if the maximal number of orthogonal 
unitary operators, Nψ

max , is greater than d. It was proven that the 
entire family of pure states in C2 ⊗C

2 except the maximally entan-
gled state [19] is useless for deterministic dense coding. Till now, 
all the studies on DDC are restricted to a single sender and a single 
receiver (cf. [22]), although the importance of building a commu-
nication protocol between several senders and several receivers is 
unquestionable. In this work, we address the question of build-
ing a DDC network between several senders and a single receiver. 
Interestingly, we show that DDC is possible even with two-level 
systems already if one increases the number of senders to two. 
We first prove that the DDC protocol with quantum advantage is 
not possible when the shared state is a generalized GHZ state with 
two or more than two senders and a single receiver except when it 
is a GHZ state for which DDC and DC attain the maximum capaci-
ties. We show that the DDC scheme can be executed by using the 
generalized W states beyond the classical limit. We also perform a 
comparison between the states from the GHZ- and the W-classes 
according to their usefulness in DDC. Moreover, we comment that 
the maximal number of unitaries cannot reach dM+1 − 1, when a 
(M + 1)-party state is shared between M senders and a single re-
ceiver, each having dimension d (cf. [23] for two-qubit states).

2. Deterministic dense coding network: many senders and a 
single receiver

We now extend the deterministic dense coding protocol to mul-
tiple senders and a single receiver, situated in distant locations. 
Let us consider a (M + 1)-party pure state |ψS1 S2...SM R〉 shared be-
tween the M senders, S1, S2, ..., SM , and a single receiver, R . A set 
of arbitrary local unitary operators, {U Sk

i } is performed by each 
sender, Sk . Our task is to find out the maximal number of uni-
taries of the form {⊗k U Sk

i } such that the members of the set of 
output states {⊗k U Sk

i ⊗ I
R |ψS1 S2...SM R〉}, sent to the receiver, are 

mutually orthogonal to each other. Hence, we find {U Sk
i }, satisfying

〈ψS1 S2...S M R |
(⊗

k

U Sk†
i ⊗ I

R

)(⊗
k′

U
Sk′
j ⊗ I

R

)
|ψS1 S2...S M R〉

= δi j, (1)

or, alternatively

tr

((⊗
k

U Sk†
i

)
ρS1 S2...S M

(⊗
k′

U
Sk′
j

)) = δi j, (2)

where ρS1 S2...SM = trR
(|ψS1 S2...SM R〉〈ψS1 S2...SM R |) is the reduced 

density matrix of all the senders’ subsystems for a given state 
|ψS1 S2...SM R〉. The aim is to find the maximal number of such uni-

taries, Nψ
max , which will define the alphabet-size of the message 

that senders can send. We can always choose the identity operator ⊗
k ISk on the Hilbert space of the senders as one of the mem-

bers of the above set of orthogonal unitary matrices {⊗k U Sk
i }. 

The task then reduces to find remaining Nψ
max − 1 number of uni-

tary matrices, satisfying Eq. (2), either analytically or by numerical 
simulations. It is noteworthy to mention that, in general, Nψ

max lies 
in the range [dM , dM+1], where dM is the classical limit and dM+1

is the quantum limit of the alphabet-size. For a given state, |ψ〉, if 

we find that Nψ
max > dM , we conclude that the state has quantum 

advantage in DDC.
Let us restrict ourselves to two senders and a single receiver. 

They now share a three-qubit pure state |ψS1 S2 R〉 and each sender 
performs a two-dimensional unitary operator given by

U Sk
i =

(
cos θ

Sk
i eix

Sk
i − sin θ

Sk
i eiy

Sk
i

sin θ
Sk
i e−iy

Sk
i cos θ

Sk
i e−ix

Sk
i

)
, (3)

where θ Sk
i ∈ [0, π ] and xSk

i , ySk
i ∈ [0, 2π ]. Notice that we have cho-

sen U Sk
i as an element of SU(2), since any arbitrary value of the 

determinant does not contribute to the orthogonality condition ex-
cept a global phase. In this case, Eq. (2) reduces to

tr
(
(U S1†

i ⊗ U S2†
i )ρS1 S2(U S1

j ⊗ U S2
j )

) = δi j . (4)

We will show that unlike two-qubit states, for three-qubit pure 
states, the solution of Eq. (4) exists, thereby ensuring quantum ad-
vantage by DDC scheme. A similar observation can also be made 
for a higher number of senders.

3. DDC: GHZ-class vs. W-class

Let us first consider two important families of three-qubit 
states. They are the generalized GHZ (gGHZ) states [24], given by

|gG H Z S1 S2 R〉 = √
α|000〉 + √

1 − α eiμ|111〉, (5)

where α ∈ [0, 1] and μ ∈ [0, 2π), and the generalized W (gW) 
states [25],

|gW S1 S2 R〉 = √
α|001〉 + √

β|010〉 + √
1 − α − β|100〉 (6)

with α, β ∈ [0, 1], and α + β ≤ 1. For α = 1
2 in Eq. (5), we get 

the well known GHZ state, while in Eq. (6) we have the W state 
for α = β = 1

3 . The gGHZ states and the gW states are well known 
subsets (of measure zero) of two SLOCC (stochastic local operations 
and classical communication) inequivalent classes of three-qubit 
pure states [26], namely, the GHZ-class [27] and the W-class [28]
respectively. The set of tripartite states, that can be converted into 
the GHZ state using only SLOCC, defines the GHZ-class, whereas 
the W-class contains all the tripartite states that can be converted, 
by means of SLOCC, into the W state. These two classes are in-
equivalent in the sense that one cannot convert, with finite prob-
ability, a member of the GHZ-class into a member of the W-class, 
or vice-versa, using SLOCC. We will prove that although the gGHZ 
states (subset of GHZ-class) is not good for DDC, the quantum ad-
vantage of DDC is possible using the gW states (subset of W-class) 
by showing Nmax beyond the classical limit.

3.1. No DDC for generalized Greenberger–Horne–Zeilinger states

Suppose the shared state is unentangled in sender and receiver 
bipartition, then the maximum amount of information that the 
two senders, each having two-dimensional systems can send to the 
receiver is two bits. Moreover, the capacity of dense coding with 
the GHZ state reaches its maximum value, implying successful im-
plementation of DDC protocol with NG H Z

max = 8 [17]. Let us consider 
DDC by using gGHZ states with α �= 1

2 . For several reasons, includ-
ing that in Theorem 1 below, the GHZ state is considered to be the 
“maximally entangled” among gGHZ states. See Ref. [29] in these 
regards. We therefore refer to gGHZ states with α �= 1

2 as “non-
maximally entangled” gGHZ states.

Theorem 1. Non-maximally entangled generalized Greenberger–Horne–
Zeilinger states are not useful for deterministic dense coding with two 
senders and a single receiver.
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