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Nonclassical correlations have been found useful in many quantum information processing tasks, and 
various measures have been proposed to quantify these correlations. In this work, we mainly study one 
of nonclassical correlations, called measurement-induced nonlocality (MIN). First, we establish a close 
connection between this nonlocal effect and the Bell nonlocality for two-qubit states. Then, we derive a 
tight monogamy relation of MIN for any pure three-qubit state and provide an alternative way to obtain 
similar monogamy relations for other nonclassical correlation measures, including squared negativity, 
quantum discord, and geometric quantum discord. Finally, we find that the tight monogamy relation of 
MIN is violated by some mixed three-qubit states, however, a weaker monogamy relation of MIN for 
mixed states and even multi-qubit states is still obtained.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quantum correlations have been not only recognized as fun-
damental properties in the quantum regime that depart from the 
classical world, but also regarded as useful resources in numerous 
quantum information and quantum computation tasks [1]. Thus, it 
is a prime task in quantum information theory to characterize and 
quantify these nonclassical resources [2–4].

One of fundamental features in quantum world is the existence 
of quantum nonlocality, especially Bell nonlocality [4], signaling 
distinct incompatibility between quantum mechanics and local re-
alism [5]. In particular, Bell nonlocality could be revealed in the 
very simple scenario of two-qubit systems, shared by distant ob-
servers, where each observer chooses one of two dichotomic mea-
surements on each qubit [6]. Moreover, it was found that the Bell 
nonlocal states, such as the Einstein–Podolsky–Rosen state [7], are 
capable of accomplishing jobs impossible in the classical world, 
such as device-independent quantum key distribution (QKD) [8,9], 
quantum teleportation [10], and super-dense coding [11].

Recently, another nonlocal effect, called measurement-induced 
nonlocality (MIN), was introduced by Luo and Fu in [12]. This non-
local effect is more general than Bell nonlocality and describes the 
global effects caused by the local measurements on one side [12]. 
In this work, we explore the potential relationships between these 
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two kinds of nonlocality. Furthermore, they are also compared to 
the well-known quantum entanglement, and to nonclassical corre-
lations beyond entanglement, such as quantum discord [13,14] and 
geometric quantum discord [15,16].

Another peculiar quantum feature is the monogamy of quantum 
correlations which constrains the distribution of quantum correla-
tions among multiparty systems. For example, when Alice and Bob 
share a maximally entangled state 1√

2
(|00〉 +|11〉), then each party 

can only be classically correlated with the third party with no 
entanglement at all. This phenomenon is termed monogamy, and 
for Bell nonlocality ensures the security of quantum cryptographic 
protocols [8]. Monogamy relations are already known for concur-
rence [17,18], negativity [19], Bell nonlocality [20–22], quantum 
steering [23–26], and quantum discord [27,28].

Along this line, we are interested in whether MIN obeys a sim-
ilar monogamy relation. We give an affirmative answer for pure 
three-qubit states, and thus disprove claims in Ref. [29] that MIN 
does not satisfy such a monogamy relation. Generally, we show 
that three-qubit states and arbitrary n-qubit states obey another 
kind of monogamy relations of MIN.

This paper is structured as follows. In Sec. 2, we introduce the 
basic definitions required in the two-qubit scenario and show that 
MIN is no larger than the Horodecki parameter [30], which quan-
tifies the maximal violation of a Bell inequality. Then, we derive 
a tight monogamy relation of MIN for pure three-qubit states in 
Sec. 3, and also recover known monogamy relations for negativity, 
quantum discord, and geometric quantum discord as byproducts. 
In Sec. 4, a counterexample is constructed to disprove the uni-
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versality of monogamy of MIN for more general cases, including 
mixed three-qubit states and multi-qubit states, but an alternative 
form of monogamy relations for general states is still obtained. Fi-
nally, we conclude with discussions in Sec. 5.

2. Measurement-induced nonlocality v.s. Bell nonlocality

A two-qubit state ρAB shared by Alice and Bob can be written 
as

ρAB = 1

4

(
I A ⊗ I B + a · σ ⊗ I B + I A ⊗ b · σ +

3∑
j,k=1

T jk σ j ⊗ σk

)
.

(1)

Here, σ ≡ (σ1, σ2, σ3) refers to the vector of Pauli spin operators. 
I A and I B are identity operators. a and b correspond to the Bloch 
vectors of Alice’s and Bob’s reduced states, and T is the spin cor-
relation matrix with T jk = 〈σ j ⊗σk〉. Complementary to the locally 
accessible information a and b, the spin correlation matrix T is 
of great importance in encoding the global information and the 
strength of the quantum correlations of the qubits [2–4].

To measure the nonlocal effects induced by local measurements 
on one side, Luo and Fu proposed the measurement-induced non-
locality [12]

DA→B
M := max

�A
||ρAB − �A(ρAB)||2, (2)

where the maximum is taken over all von Neumann measure-
ments {�A

j } that preserve Alice’s local state, i.e., �A(ρA) :=∑
j �

A
j ρA�A

j = ρA . ||X || := (Tr
[

X† X
]
)1/2 denotes the Hilbert–

Schmidt norm, and the notation A → B specifies Alice as the 
measuring party. Similarly, the nonlocality induced by Bob’s lo-
cal measurements DB→A

M could also be defined. Interestingly, 
it was proven in [12] that MIN has asymmetric property, i.e., 
DA→B

M 	=DB→A
M .

For an arbitrary two-qubit state ρAB , the MIN admits an explicit 
form [12]

DA→B
M =

⎧⎪⎪⎨
⎪⎪⎩

1

4

(
Tr

[
T T 
]

− 1

a2
a
T T 
a

)
a 	= 0, (a)

1

4

(
Tr

[
T T 
]

− s3

)
a = 0. (b)

(3)

Three eigenvalues s1, s2, s3 of the symmetric matrix T T 
 are ar-
ranged in descending order, i.e., s1 ≥ s2 ≥ s3 ≥ 0, and here and 
elsewhere we use x = |x| to represent the modulus of a vec-
tor x. Obviously, the MIN of a state lies in the interval [0, 12 ] and 
achieves its maximum value if and only if the state is locally uni-
tary equivalent to any Bell state [12]. Other basic properties of MIN 
have been listed in [12]. However, this MIN based on the Hilbert–
Schmidt (HS) norm suffers from one weakness that it may increase 
under the completely-positive and trace-preserving (CPTP) maps 
on Bob’s side [31,32]. To overcome this weak point, other MINs 
are proposed, such as based on the trace-norm [32], the relative 
entropy [33], the fidelity [34], and the two-sided projective mea-
surements [35]. The basic properties of these MINs are referred to 
Refs. [32–35]. In this work, we explore the connections between 
the MIN based on the HS-norm and other quantum correlations 
and investigate the distribution of MINs for three-qubit states.

Further, Bell nonlocality characterizes whether the outcome 
statistics generated by local measurements on both sides could 
be explained by a local hidden variable theory. This nonlocal ef-
fect could be exposed in the very simple scenario of two-qubit 
systems, shared by distant observers, where each observer in-
volves two dichotomic measurements on each qubit. Specifically, 

each party has two measurements with outcomes +1 or −1, and 
these binary measurements are assumed to be Hermitian opera-
tors: A1 = a1 · σ , A2 = a2 · σ for Alice and B1 = b1 · σ , B2 = b2 · σ
for Bob. Then, Bell nonlocality is witnessed by violating the Bell–
Clauser, Horne, Shimony, and Holt (CHSH) inequality [6]

〈B〉2 = (Tr [Bρ])2 ≤ 4, (4)

with the Bell operator B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2.
A two-qubit state ρAB is Bell nonlocal if it violates the Bell–

CHSH inequality for some set of local measurements. It is remark-
able that the above statement still holds even if the state is not 
limited to qubit states or even does not admit a quantum descrip-
tion. Hence, determining whether ρAB is Bell–CHSH nonlocal or 
not is equivalent to check if [30]

M := 1

4
max

A1,A2,B1,B2

〈B〉2 = s1 + s2 = Tr
[

T T 
]
− s3 ≤ 1 (5)

Here the Horodecki parameter is denoted as M, quantifying the 
maximal violation of Bell–CHSH inequality.

It follows immediately from Eqs. (3b) and (5) that there is

DA→B
M = 1

4
M, a = 0. (6)

For a 	= 0, note that s3 ≤ n
T T 
n ≤ s1 for an arbitrary unit vector 
n. Hence, choosing n = a/a, yields from Eq. (3a) that

DA→B
M = 1

4

(
Tr

[
T T 
]

− n
T T 
n
)

≤ 1

4
M, (7)

for two-qubit states generally. This implies that the Horodecki 
parameter provides an upper bound for MIN. Since M is sym-
metric under the interchange of Alice and Bob, one similarly has 
DB→A

M ≤ 1
4M, corresponding to the choice n = b/b.

Finally, it is of interest to also consider other nonclassical cor-
relations. For example, in contrast to Eq. (2), geometric quantum 
discord is defined as [15]

DA→B
G := min

�A
||ρAB − �A(ρAB)||2, (8)

where the minimum is taken over all von Neumann measure-
ments. It is apparent that DA→B

G ≤ DA→B
M . Additionally, for two-

qubit states, it was shown in [36,37] that the geometric quantum 
discord further upper bounds both the computable entanglement 
measure N [38] and quantum discord D [13,14]. Thus, we are able 
to obtain an ordering chain of these nonclassical correlation mea-
sures

N 2, (DA→B)2 ≤ 2DA→B
G ≤ 2DA→B

M ≤ 1

2
M, (9)

for two-qubit states. This ordering chain is useful in exploring the 
monogamy phenomenon for multi-party systems. In particular, if 
there exist monogamy relations for correlation measures in the 
right side of above ordering (9), such as MIN or Bell nonlocality, 
it is highly possible that these correlation measures in the left side 
also obey a similar monogamy relation. We will show it is indeed 
the case in the next section.

3. Monogamy relations for pure three-qubit states

Consider a general pure three-qubit state of a tripartite system 
held by Alice, Bob, and Charlie:

|φABC 〉 =
1∑

i, j,k=0

aijk|i jk〉. (10)
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