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In turbulent Rayleigh–Bénard convection one seeks the relationship between the heat transport, captured 
by the Nusselt number, and the temperature drop across the convecting layer, captured by the Rayleigh 
number. In experiments, one measures the Nusselt number for a given Rayleigh number, and the question 
of how close that value is to the maximal transport is a key prediction of variational fluid mechanics 
in the form of an upper bound. The Lorenz equations have traditionally been studied as a simplified 
model of turbulent Rayleigh–Bénard convection, and hence it is natural to investigate their upper bounds, 
which has previously been done numerically and analytically, but they are not as easily accessible in an 
experimental context. Here we describe a specially built circuit that is the experimental analogue of 
the Lorenz equations and compare its output to the recently determined upper bounds of the stochastic 
Lorenz equations [1]. The circuit is substantially more efficient than computational solutions, and hence 
we can more easily examine the system. Because of offsets that appear naturally in the circuit, we are 
motivated to study unique bifurcation phenomena that arise as a result. Namely, for a given Rayleigh 
number, we find a reentrant behavior of the transport on noise amplitude and this varies with Rayleigh 
number passing from the homoclinic to the Hopf bifurcation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Lorenz equations are an archetype for key aspects of non-
linear dynamics, chaos and a range of other phenomena that mani-
fest themselves across all fields of science, particularly in fluid flow 
[see e.g., 2,3]. Lorenz [4] derived his model to describe a simpli-
fied version of Saltzman’s treatment of finite amplitude convection 
in the atmosphere [5]. The three coupled Lorenz equations, which 
initiated the modern field we now call chaos theory, are

ẋ = σ(y − x),

ẏ = ρx − xz − y and

ż = xy − βz,

(1)

where x describes the intensity of convective motion, y the tem-
perature difference between ascending and descending fluid and 
z the deviation from linearity of the vertical temperature pro-
file. The parameters are the Prandtl number σ , the normalized 
Rayleigh number, ρ = Ra

Rac
, where Rac = 27π4

4 , and a geometric 
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factor β . Here we take σ = 10 and β = 8
3 , the original values used 

by Lorenz.
The sensitivity of solutions to small perturbations in initial con-

ditions and/or parameter values characterize chaotic dynamics and 
have a wide array of implications. Chaotic behavior does not lend 
itself well to standard analysis, but modern computational meth-
ods provide us with vastly more powerful tools than those avail-
able to Lorenz. However, one powerful mathematical method used 
for example in the study of fluid flows is variational, and assesses 
the optimal value of a transport quantity, or a bound [6–8], which 
we briefly discuss next.

1.1. Bounds on fluid flows

Bounding quantities in fluid flows has important physical con-
sequences and substantial theoretical significance. Whereas varia-
tional principles are central when an action is well-defined and 
phase space volume is conserved, they pose significant challenges 
for dissipative nonlinear systems in which the phase space volume 
is not conserved and thus not Hamiltonian [e.g., 9]. However, initi-
ated by the work of Howard [10], who used a variational approach 
to determine the upper bounds on heat transport in statistically 
stationary Rayleigh–Bénard convection, with incompressibility as 
one of the constraints, the concept of mathematically bounding 
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the behavior of a host of flow configurations has developed sub-
stantially [8], as well as in other dissipative systems such as solid-
ification [11].

Transport in the Lorenz system is defined as the quantity 〈xy〉
where 〈·〉 denotes the infinite time average. We also note that this 
quantity is proportional to 〈z〉 and 〈x2〉. Bounds on transport were 
first produced by Malkus [12] and Knobloch [13] in the 1970s. 
Knobloch used the theory of stochastic differential equations to an-
alyze statistical behavior in the Lorenz system, with particular fo-
cus on the computation of long time averages, including the trans-
port. His method can be seen as an early incarnation of the back-
ground method of Constantin and Doering [7]. Following the devel-
opment of new analytical tools, interest in bounds on the Lorenz 
system and their interpretation has grown over the past two 
decades. Using the background method, Souza and Doering [14]
produced sharp upper bounds on the transport 〈xy〉 ≤ β(ρ − 1), 
which are saturated by the non-trivial equilibrium solutions 
(x, y, z) ≡ (x0, y0, z0) = (±√

β(ρ − 1),±√
β(ρ − 1),ρ − 1). Agar-

wal and Wettlaufer [1] extended their result to the stochastic 
Lorenz system, recovering the sharp bounds in the zero noise am-
plitude limit.

Recent numerical work, especially in the form of semi-definite 
programming, has provided novel methods for bounding and lo-
cating optimal trajectories, that is, trajectories that maximize some 
function of a system’s state variables [15].

Tobasco et al. [16] describe such an approach to this problem 
through the use of auxiliary functions similar to Lyapunov func-
tions used in stability analyses. Goluskin [17] utilizes this method 
to compute example bounds on polynomials in the Lorenz system. 
For transport in particular (the polynomial xy), his results agree 
with the existing analytical theory. In the chaotic regime, however, 
we know the optimal solutions are unstable and are only attained 
for a very specific set of initial conditions, and in the stochastic 
system such solutions may never be realized. Hence, it is natural 
to ask about bounds on non-specious trajectories. Fantuzzi et al.
[18] present a semi-definite programming approach to this prob-
lem similar to that of Tobasco et al. [16], though work still needs 
to be done to apply their methods to systems containing unstable 
limit cycles and saddle point equilibria, which includes the Lorenz 
system.

We offer an alternative method for analyzing time-averaged be-
havior through the use of an analog circuit. Circuits can model a 
wide range of linear and nonlinear dynamical systems, and by col-
lecting voltage data from the circuit we can perform calculations 
of any function of the systems state variables. In this paper, we 
use the circuit approach to study transport, 〈xy〉, in the stochastic 
Lorenz system, a choice which is motivated by its physical anal-
ogy with Rayleigh–Bénard convection. For true convective motion, 
experimental measurements of transport are challenging, and the 
circuit provides us with a quick and easy way to perform these 
calculations, in fact much faster than standard numerical methods. 
We first introduce the stochastic Lorenz system and the corre-
sponding bounds on transport. We then discuss the circuit im-
plementation and offer an analytical model for the circuit system. 
Finally, we discuss our computations of transport in relation to the 
analytical upper bound theory and compare our results to the nu-
merical solutions.

2. The circuit Lorenz experiment

2.1. Upper bounds of the stochastic Lorenz system

The Lorenz system might be best described as a motif of atmo-
spheric convection, which was the motivation for its derivation. 
However, such physically based models can often become more 

realistic by adding a stochastic element to account for random fluc-
tuations, observational error, and unresolved processes. This con-
ceptually common idea has become particularly popular in climate 
modeling and weather prediction [e.g., 19,20]. Here, we follow this 
approach in the Lorenz system by adding a stochastic term with a 
constant coefficient [1] viz.,

ẋ = σ(y − x) + Aξx,

ẏ = ρx − xz − y + Aξy and

ż = xy − βz + Aξz,

(2)

where the ξi are Gaussian white noise processes, A is the noise 
amplitude and σ , β , and ρ are as in Equations (1). The circuit de-
scribed below in §2.2 allows us to experimentally test and analyze 
stochastic bounds of the transport in the Lorenz system subject to 
forced and intrinsic noise. In the infinite time limit, the stochastic 
upper bounds of Agarwal and Wettlaufer [1] are given by

〈xy〉T ≤ β(ρ − 1) + A2

ρ − 1

(
1 + 1

2σ

)
. (3)

For A = 0 these reduce to the upper bounds of Souza and Doering 
[14]. However, unlike the deterministic case, the fixed point solu-
tions do not exist so that the optimum is never truly attained. We 
note that these bounds tend to infinity as ρ → 1, though Fantuzzi 
[21] improved this bound in the low Rayleigh number regime.

2.2. The Lorenz electrical circuit

Following the implementation described by Horowitz [22], the 
Lorenz system is modeled in an analog circuit through a series 
of op-amp integrators and voltage multipliers (Fig. 1). Mathemati-
cally, this implementation essentially solves Equations (1) by con-
tinuously integrating both sides and returning the output x, y, z
back into the circuit. Adding a noise element to the integrators al-
lows us to adapt this circuit to the stochastic Lorenz systems. To 
generate noise we use Teensy 3.5 microprocessors. These boards 
possess hardware random number generators that provide a higher 
quality of randomness compared to those more commonly found 
on microprocessors and computers. They have 12-bit resolution 
digital to analog converters (DAC) allowing us to output a voltage 
between 0 V and 3.3 V at 212 = 4096 discrete values. This gives 
us better spectral characteristics compared to pulse-width modu-
lation which outputs either 0 V or 3.3 V with a duty cycle that 
corresponds to the analog level. To achieve Gaussian random noise 
we sum 8 random integers, chosen in a limited range correspond-
ing to the noise amplitude. The number is then centered about the 
middle voltage corresponding to the integer 2048 and outputed 
through the DAC channel. Following this process the signal is AC 
coupled to ensure the voltage is symmetric about 0 V, and further 
amplification is achieved through an op-amp. This method allows 
us to easily control the noise processes and amplitudes directly 
from the computer, and thus to automate many components of the 
experiment.

To collect voltage data from the circuit, we use an Arduino 
Due microprocessor with 12-bit analog read resolution along with 
several voltage dividers and amplifiers to put the voltages in the 
Arduino’s operating range of 0–3.3 V. As in the case of the noise 
generation, when processed the voltages appear as an integer be-
tween 0 and 4095, corresponding to a voltage between 0–3.3 V. 
From this data we can convert back to the original voltage using 
measurements of the amplifiers and voltage dividers and scaling 
by 10, the normalization factor of the circuit.

The rate of integration is determined by the three capacitors, 
ideally equal in value. This allows us to adjust the sampling rate 
depending on the application. For measuring transport, we can 
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