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We calculate the current correlations for the steady-state electron transport through multi-level parallel 
quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We 
account for the electron–electron Coulomb interaction, and the para- and diamagnetic electron–photon 
interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock 
spaces. In the spectral density of the temporal current–current correlations we identify all the transitions, 
radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong 
signs of two types of Rabi oscillations.

© 2018 Published by Elsevier B.V.

1. Introduction

Experiments [1–6] in which the electron transport through 
nanoscale electronic systems placed in photon cavities, and model 
calculations [7–11] thereof, are gaining attention in the last years.

Due to small size of the electronic systems the constant aver-
age current through the system in the steady state does not convey 
much information about the underlying processes, and one might 
expect information about radiative transitions to be lost at that 
time scale, or not detectable [12]. In order to remedy this situa-
tion researchers have realized that the noise power spectrum, or 
the noise power spectral density of a system calculated through 
the Fourier transform of the current–current two-time correla-
tion function can be measured experimentally [13]. Many theo-
retical researchers have used this to calculate the noise spectral 
density for electron transport through model systems in differ-
ent situations using, for example, non-equilibrium Green functions 
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[14], Markovian master equation in the steady state [15], or non-
Markovian master equations in the transient regime [16], just to 
mention very few.

Complementary to the calculation of the noise power spec-
tral densities of the charge current transport through electron 
systems on the nanoscale, the calculation of the power spectral 
properties of photon emission statistics of cavities with embedded 
electron systems has been undertaken by many more theoretical 
groups [17–19,7]. Recently, we have investigated the photon corre-
lations in the emission radiation from a photon cavity containing 
a short quantum wire with embedded two parallel quantum dots 
through which a steady state current is driven with a bias differ-
ence between two external leads [20]. There, the spectral density 
of the fluctuations in the radiation can be used to differentiate be-
tween the conventional and the ground state electroluminescence 
in the strong electron–photon coupling regime [7,20]. Here, we 
will demonstrate that in this complex interacting many-state sys-
tem, the power spectral density of the temporal current–current 
correlations can be used to identify the underlying processes, the 
transitions between interacting many-body states of cavity-photon 
dressed electron states, that contribute to maintaining the system 
in its steady state.
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Fig. 1. (Upper) Schematic short quantum wire with the embedded parallel quantum 
dots, the central system (S), in a 3D photon cavity coupled to the left (L) and right 
(R) leads. The color and the height of the leads represents their chemical potentials. 
(Lower) The potential energy landscape defining the parallel quantum dots embed-
ded in a short quantum wire of length 150 nm ≈ 6.3aw , where aw = 23.8 nm is 
the effective magnetic length for magnetic field B = 0.1 T and parabolic confine-
ment energy h̄�0 = 2.0 meV of the short wire and leads in the y-direction. The 
gaps at x ≈ ±3.15aw indicate the onset of the semi-infinite leads. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this 
article.)

2. Model

We consider a short two-dimensional GaAs quantum wire with 
length L = 150 nm placed in a photon cavity. We use the 36 lowest 
in energy single-electron states of the wire, |i〉, to build a many-
electron Fock space of 0–3 Coulomb interacting electrons, |μ). The 
potential defining the short quantum wire with two parallel quan-
tum dots displayed in Fig. 1 is

V (x, y) =
[

1

2
m∗�2

0 y2 + eV g

+ Vd

2∑
i=1

exp
{
−(βx)2 − β2(y − di)

2
}]

×θ

(
Lx

2
− |x|

)
(1)

with h̄�0 = 2.0 meV, Vd = −6.5 meV, β = 0.03 nm−1, d1 =
−50 nm, d2 = +50 nm, Lx = 150 nm, and θ is the Heaviside step 
function. The plunger gate voltage V g is used to move the states 
of the system up or down with respect to the bias window defined 
by the external leads to be describe below.

We use as a kernel for the mutual electron–electron Coulomb 
interaction

V Coul(r − r′) = e2

κe

√
|r − r′|2 + η2

c

, (2)

with a small regularizing parameter ηc/aw = 3 × 10−7 (aw being 
defined below), and for GaAs parameters we assume κe = 12.4, 
m∗ = 0.067me , and g∗ = −0.44. In terms of field operators the 
Hamitonian of the central system is

HS =
∫

d2rψ†(r)
{

π2

2m∗ + V (r)
}

ψ(r) + HEM + HCoul

−1

c

∫
d2r j(r) · Aγ − e

2m∗c2

∫
d2r ρ(r)A2

γ , (3)

with

π =
(

p + e

c
Aext

)
, (4)

where Aext is a classical vector potential producing an external 
homogeneous small magnetic field B = 0.1 T along the z-axis, per-
pendicular to the plane of the two-dimensional quantum wire, 
inserted to break the spin and the orbital degeneracies of the 
states in order to enhance the stability of the results. The first 
term in the second line of Eq. (3) is the paramagnetic, and the 
second term the diamagnetic, electron–photon interaction. The ex-
ternal magnetic field, B , and the parabolic confinement energy of 
the leads and the central system h̄�0 = 2.0 meV, together with the 
cyclotron frequency ωc = (eB)/(m∗c) lead to an effective character-
istic confinement energy h̄�w = h̄(ω2

c + �2
0)

1/2, and an effective 
magnetic length aw = (h̄/(m∗�w))1/2. This characteristic length 
scale assumes approximately the value 23.8 nm for the parameters 
selected here. In terms of the cavity photon creation and annihi-
lation operators, a† and a, the Hamiltonian for the single cavity 
photon mode is HEM = h̄ωa†a, with energy h̄ω.

We assume a rectangular photon cavity (x, y, z) ∈ {[−ac/2,

ac/2] ×[−ac/2, ac/2] ×[−dc/2, dc/2]} with the short quantum wire 
centered in the z = 0 plane. In the Coulomb gauge the polarization 
of the electric field parallel to the transport in the x-direction (with 
the unit vector ex) is accomplished in the TE011 mode, or perpen-
dicular (defined by the unit vector ey ) in the TE101 mode. The two 
versions of the quantized vector potential for the cavity field are 
in a stacked notation expressed as

Aγ (r) =
(

êx

êy

)
A

{
a + a†

}(
cos

(
π y
ac

)
cos

(
πx
ac

)
)

cos

(
π z

dc

)
, (5)

for the TE011 and TE101 modes, respectively. The strength of 
the vector potential, A, determines the coupling constant gEM =
eA�waw/c, here set to 0.05 meV, or 0.10 meV, leaving a dimen-
sionless polarization tensor

gk
i j = aw

2h̄

{〈i|êk · π | j〉 + h.c.
}
. (6)

In order to maintain high numerical accuracy the cavity-photon 
dressed electron states have to be constructed in a step wise man-
ner [21]. First, the Fock space of non-interacting electrons is con-
structed from 36 accurate single-electron states keeping enough 
one-, two-, and three-electron states such that the energy of the 
highest states for each electron number surpasses the bias win-
dow defined by the chemical potential in each lead by much. For 
the selected parameters the total number of states is 1228. This ba-
sis is then used to diagonalize the Coulomb interacting (2) electron 
system. Next, a basis is constructed as a tensor product of the 120 
lowest in energy Coulomb interacting electron states and the 16 
lowest eigenstates of the photon number operator. These are used 
to diagonalize the electron–photon interacting system. Finally, 120 
lowest of these cavity-photon dressed electron states are used for 
the transport calculation. The step wise construction is reminiscent 
of the step wise construction of a Green function for an interacting 
electron–photon system.

The coupling of the central system to the leads is described by 
the Hamiltonian

HT = θ(t)
∑

il

∫
dq

(
T l

qic
†
qldi + (T l

qi)
∗d†

i cql

)
, (7)
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