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1. Introduction

Berry phase [1] is a non-trivial geometric phase, distinct from
the dynamical phase, that is picked up by a quantum system when
it slowly traverses a closed path in the Hamiltonian parameter
space. Because of the wide range of its applications, examples of
Berry phase have appeared in many different areas of physics and
astronomy [2-16]. Of particular relevance to our work is the Berry
phase of primordial cosmological perturbations, which are well
accommodated in inflationary models [17-19]. In single-field infla-
tion, using the gauge invariant variable of Bardeen [20], the Berry
phase has been obtained from the wave function of the perturba-
tions by solving the associated Shrédinger equation [21]. As the
origin of our present universe, primordial perturbations have pre-
sumably left their mark to be traced in cosmological observations.
In this regard, the Berry phase, as a footprint of the perturbations,
can serve to probe the cosmological inflation [22].

In this work, we obtain the Berry phase of the linear primor-
dial perturbations in the single-field slow-roll inflation via a dif-
ferent approach. Our approach is based on reducing the problem
to a time-dependent harmonic oscillator and, thereby, using the
Lewis—-Riesenfeld invariant operator method [23-27] to obtain the
Berry phase. This approach has been employed to obtain the Berry
phase of relic gravitons in the FRW background [8]. Here, using the
gauge invariant variables of Malik and Wands [28], we derive the
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Hamiltonian of the scalar and tensor Fourier modes in the form of
time-dependent harmonic oscillator Hamiltonians (Section 2). The
Berry phase of a generalized harmonic oscillator has been derived
in [29] using the Lewis-Riesenfeld invariant operator method. In
the same manner, we find the invariant operators of the resulting
Hamiltonians and use their eigenstates to calculate the adiabatic
Berry phase for sub-horizon scalar and tensor modes as a Lewis—
Riesenfeld phase (Section 3). Finally, we discuss the discrepancy
in the results of [21] for these Berry phases, which is resolved to
yield agreement with our results.

2. The perturbation Hamiltonian

In the single-field model, the universe is dominated by a scalar
field ¢ with potential V (¢). The action is

1 o _
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where units have been chosen such that 874G =h =c = 1. The
background universe is the flat FRW spacetime

ds? = —N?(t)dt? + a®(t)8ydx dx!

where a is the scale factor and N depends on the choice of the
time variable. (Conformal and cosmic time correspond to N =a
and N =1, respectively.) The background scalar field, which de-
pends only on time, is ¢(t) with conjugate momentum IT = ¢/N.
In the ADM formalism [30], where

ds? = —N?dt? + hyj(dx' 4+ N'de)(dx’ + NYdt)
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the perturbed universe has hjj = a®e?*8;; + y;j, where a(t,x) is
the scalar curvature perturbation and y;(t, %) is a divergence-less
and traceless metric perturbation that represents transverse gravity
waves.

Let us first consider the scalar perturbations. The linear scalar
gauge invariant perturbation variable is constructed from the cur-
vature and field perturbations (o and §¢) according to [28]

C(t, %) H 3¢
K)=a——
o ¢
where H(t) = a/Na is the background Hubble parameter. The first
order slow-roll parameters are given by

= 10 €)= A
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Working in the uniform energy density gauge, §¢ = 0, action (1)
to the second order in perturbation variable ¢ is given by [31]

Secatar = / a'x(a 5 (0)? — aeN @) @)

Choosing t to be the conformal time 7 by setting N = a, and defin-
ing the Mukhanov-type variable ¢ = —a+/2¢€¢, (2) becomes
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where prime indicates conformal time derivative and H =d’/a =
aH is the conformal Hubble parameter. Representing the Fourier
transforms of g by gy and forming the row matrix qk = (q(R) (I))
from the real and imaginary parts of qy, (3) can be written as

d3k
Sscalar=/d'r L scalar »
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The corresponding Hamiltonian is given by
d3k
Hscalar = (2 )3 Hk scalar » Hk scalar = Z pqu Ek

with pk = 0Ly, Scalar/aqk = (p(R) p;‘”). Thus, promoting the

canonically conjugate variables to operators (denoted by hat), the
matrices become matrix operators, and

- 1 .7, = ATA AT a AT A
Hy scalar = E[pk Prc + H(Prqr + Qi Pr) + kzqqu] (4)
which represents a time-dependent harmonic oscillator of fre-
quency wi(t) = vVk% — F2.

As for the linear tensor perturbations, the second order action
calculated from (1) is [31]

Stensor:/d4xi[m(at7/l]) - _(akyl]) 1.

Set N =a and write the Fourier transforms y;j, in terms of the

N 2
polarization tensors Efj(k) (s=1,2)as yjjk =2, \/TX; efj(k). We
similarly get

Stensor = / PR
tensor — (2 )3 k.tensor

2
1
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where xiT = (™ x2™). Note that the summation over s

pertains only when both polarizations are present in the grav-

itational wave. Hence, defining the conjugate momenta nffT =

aﬁ,‘,tensor/axig = (n,i(R) nk(')) and promoting to operators, we

find

Hk tensor = Z Hk tensor
(5)
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Thus, the Hamiltonian for tensor modes also coincides with that of
a harmonic oscillator of frequency Qi (t) = vk? — H2.

3. Berry phase of the scalar and tensor modes

We use the invariant operator method [23,24] to determine
the dynamical invariants of the harmonic oscillator Hamiltonians
(4) and (5). The Berry phase can then be obtained as a Lewis-
Riesenfeld phase [29], which is constructed from the eigenstates of
the invariant operator.

The invariant operator, by definition, satisfies the von Neumann
equation. It has been derived for the generalized harmonic oscil-
lator Hamiltonian in the form, 1(Zp* + Y (pg + @p) + X4°1, where
X,Y, Z are time dependent [32]. This has the same form as Hamil-
tonians (4) and (5). Thence, for (4) the invariant takes the form

; 1{ 1 il
k,scalar = 5 5 9k 4k
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where the auxiliary variable p(7) is a time-periodic solution of
the Milne-Pinney equation

o + (@ —H)pi— p > =0. (6)
We define the raising and lowering matrix operators by
A~ (£) 1
A, =—
k «/5
AG 4@

LAk
and write A,(‘ 4 =(A;; Ajz)- The components 1 and 2 are stan-
dard raising and lowering operators that satisfy

1. N A - .
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where |ngq,nyy) is the eigenstate of IScalar A,‘ Ak
eigenvalue ng; +ng + 1.

The accumulated Berry phase over time period 7( is derivable
from the Lewis-Riesenfeld phase according to [29]

k1’2|nk1.2
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To calculate the integrand, we proceed as follows. From (8), differ-
entiation with respect to t yields

<nk1 ot /A\,(:{)‘nm — ]>

1
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= (Nge1 |07 | Ng1) — (g1 — 1[0z Nger — 1)
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