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In the framework of the single-field slow-roll inflation, we derive the Hamiltonian of the linear primordial 
scalar and tensor perturbations in the form of time-dependent harmonic oscillator Hamiltonians. We find 
the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic 
Berry phase for sub-horizon modes in terms of the Lewis–Riesenfeld phase. We conclude by discussing 
the discrepancy in the results of Pal et al. (2013) [21] for these Berry phases, which is resolved to yield 
agreement with our results.
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1. Introduction

Berry phase [1] is a non-trivial geometric phase, distinct from 
the dynamical phase, that is picked up by a quantum system when 
it slowly traverses a closed path in the Hamiltonian parameter 
space. Because of the wide range of its applications, examples of 
Berry phase have appeared in many different areas of physics and 
astronomy [2–16]. Of particular relevance to our work is the Berry 
phase of primordial cosmological perturbations, which are well 
accommodated in inflationary models [17–19]. In single-field infla-
tion, using the gauge invariant variable of Bardeen [20], the Berry 
phase has been obtained from the wave function of the perturba-
tions by solving the associated Shrödinger equation [21]. As the 
origin of our present universe, primordial perturbations have pre-
sumably left their mark to be traced in cosmological observations. 
In this regard, the Berry phase, as a footprint of the perturbations, 
can serve to probe the cosmological inflation [22].

In this work, we obtain the Berry phase of the linear primor-
dial perturbations in the single-field slow-roll inflation via a dif-
ferent approach. Our approach is based on reducing the problem 
to a time-dependent harmonic oscillator and, thereby, using the 
Lewis–Riesenfeld invariant operator method [23–27] to obtain the 
Berry phase. This approach has been employed to obtain the Berry 
phase of relic gravitons in the FRW background [8]. Here, using the 
gauge invariant variables of Malik and Wands [28], we derive the 
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Hamiltonian of the scalar and tensor Fourier modes in the form of 
time-dependent harmonic oscillator Hamiltonians (Section 2). The 
Berry phase of a generalized harmonic oscillator has been derived 
in [29] using the Lewis–Riesenfeld invariant operator method. In 
the same manner, we find the invariant operators of the resulting 
Hamiltonians and use their eigenstates to calculate the adiabatic 
Berry phase for sub-horizon scalar and tensor modes as a Lewis–
Riesenfeld phase (Section 3). Finally, we discuss the discrepancy 
in the results of [21] for these Berry phases, which is resolved to 
yield agreement with our results.

2. The perturbation Hamiltonian

In the single-field model, the universe is dominated by a scalar 
field ϕ̄ with potential V (ϕ̄). The action is

S =
∫

d4x
√−g

1

2

[
R − gμν∂μϕ̄∂νϕ̄ − 2V (ϕ̄)

]
(1)

where units have been chosen such that 8πG = h̄ = c = 1. The 
background universe is the flat FRW spacetime

ds2 = −N2(t)dt2 + a2(t)δi jdxidx j

where a is the scale factor and N depends on the choice of the 
time variable. (Conformal and cosmic time correspond to N = a
and N = 1, respectively.) The background scalar field, which de-
pends only on time, is ϕ(t) with conjugate momentum � = ϕ̇/N . 
In the ADM formalism [30], where

ds2 = −N̄2dt2 + h̄i j(dxi + Nidt)(dx j + N jdt)
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the perturbed universe has h̄i j = a2e2αδi j + γi j , where α(t, x) is 
the scalar curvature perturbation and γi j(t, x) is a divergence-less 
and traceless metric perturbation that represents transverse gravity 
waves.

Let us first consider the scalar perturbations. The linear scalar 
gauge invariant perturbation variable is constructed from the cur-
vature and field perturbations (α and δϕ̄) according to [28]

ζ(t, x) = α − H

�
δϕ̄

where H(t) = ȧ/Na is the background Hubble parameter. The first 
order slow-roll parameters are given by

η(t) = 1

N H

�̇

�
, ε(t) = − Ḣ

N H2
.

Working in the uniform energy density gauge, δϕ̄ = 0, action (1)
to the second order in perturbation variable ζ is given by [31]

Sscalar =
∫

d4x [a3 ε

N
(∂tζ )2 − aεN(∂iζ )2]. (2)

Choosing t to be the conformal time τ by setting N = a, and defin-
ing the Mukhanov-type variable q = −a

√
2εζ , (2) becomes

Sscalar =
∫

dτd3x
1

2
[−(∂iq)2 + q′2 + H̄2q2 − 2H̄qq′],

H̄ = H+ ε′

2ε
= H(1 + ε + η)

(3)

where prime indicates conformal time derivative and H = a′/a =
aH is the conformal Hubble parameter. Representing the Fourier 
transforms of q by qk and forming the row matrix qT

k = (q(R)

k q(I)
k )

from the real and imaginary parts of qk , (3) can be written as

Sscalar =
∫

dτ
d3k

(2π)3
Lk,scalar ,

Lk,scalar = 1

2
[(q′

k − H̄qk)T (q′
k − H̄qk) − k2qT

k qk].
The corresponding Hamiltonian is given by

Hscalar =
∫

d3k

(2π)3
Hk,scalar , Hk,scalar =

∑
m

pT
k q′

k −Lk

with pT
k = ∂Lk,scalar/∂q′

k = (p(R)

k p(I)
k ). Thus, promoting the 

canonically conjugate variables to operators (denoted by hat), the 
matrices become matrix operators, and

Ĥk,scalar = 1

2
[p̂T

k p̂k + H̄(p̂T
k q̂k + q̂T

k p̂k) + k2q̂T
k q̂k] (4)

which represents a time-dependent harmonic oscillator of fre-

quency ωk(τ ) =
√

k2 − H̄2.
As for the linear tensor perturbations, the second order action 

calculated from (1) is [31]

Stensor =
∫

d4x
1

2
[ a3

4N
(∂tγi j)

2 − aN

4
(∂kγ i j)

2].
Set N = a and write the Fourier transforms γi jk in terms of the 
polarization tensors εs

i j(k) (s = 1, 2) as γi jk = ∑
s

√
2

a χ s
k εs

i j(k). We 
similarly get

Stensor =
∫

dτ
d3k

(2π)3
Lk,tensor ,

Lk,tensor =
2∑

s=1

1

2
[(χ s′

k −Hχ s
k)T (χ s′

k −Hχ s
k) − k2χ sT

k χ s
k]

where χ sT
k = (χ

s(R)

k χ
s(I)
k ). Note that the summation over s

pertains only when both polarizations are present in the grav-
itational wave. Hence, defining the conjugate momenta π sT

k =
∂Lk,tensor/∂χ

s′
k = (π

s(R)

k π
s(I)
k ) and promoting to operators, we 

find

Ĥk,tensor =
∑

s

Ĥ
s
k,tensor ,

Ĥ
s
k,tensor = 1

2
[π̂ sT

k π̂ s
k +H(π̂ sT

k χ̂ s
k + χ̂ sT

k π̂ s
k) + k2χ̂ sT

k χ̂ s
k].

(5)

Thus, the Hamiltonian for tensor modes also coincides with that of 
a harmonic oscillator of frequency �k(τ ) = √

k2 −H2.

3. Berry phase of the scalar and tensor modes

We use the invariant operator method [23,24] to determine 
the dynamical invariants of the harmonic oscillator Hamiltonians 
(4) and (5). The Berry phase can then be obtained as a Lewis–
Riesenfeld phase [29], which is constructed from the eigenstates of 
the invariant operator.

The invariant operator, by definition, satisfies the von Neumann 
equation. It has been derived for the generalized harmonic oscil-
lator Hamiltonian in the form, 1

2 [Z p̂2 + Y (p̂q̂ + q̂ p̂) + X q̂2], where 
X, Y , Z are time dependent [32]. This has the same form as Hamil-
tonians (4) and (5). Thence, for (4) the invariant takes the form

Îk,scalar = 1

2

{
1

ρ2
k

q̂T
k q̂k

+ [ρk(p̂k + H̄q̂k) − ρ ′
kq̂k]T [ρk(p̂k + H̄q̂k) − ρ ′

kq̂k]
}

where the auxiliary variable ρk(τ ) is a time-periodic solution of 
the Milne–Pinney equation

ρ ′′
k + (ω2

k − H̄′)ρk − ρ−3
k = 0. (6)

We define the raising and lowering matrix operators by

Â
(±)

k = 1√
2

{
1

ρk
q̂k ± i[ρ ′

kq̂k − ρk(p̂k + H̄q̂k)]
}

(7)

and write Â
(±)T
k = ( Â(±)

k1 Â(±)

k2 ). The components 1 and 2 are stan-
dard raising and lowering operators that satisfy

[ Â(±)

k1 , Â(±)

k2 ] = 0, [ Â(−)

k1 , Â(+)

k1 ] = [ Â(−)

k2 , Â(+)

k2 ] = 1

Â(−)

k1,2|nk1,2〉 = √
nk1,2 |nk1,2 − 1〉,

Â(+)

k1,2|nk1,2〉 = √
nk1,2 + 1 |nk1,2 + 1〉

(8)

where |nk1,nk2〉 is the eigenstate of Îscalar
k = Â

(+)T
k Â

(−)

k + 1 with 
eigenvalue nk1 + nk2 + 1.

The accumulated Berry phase over time period τ0 is derivable 
from the Lewis–Riesenfeld phase according to [29]

�k,scalar(nk1,nk2, τ0) =
∫ τ0

0
〈nk1,nk2 |i∂τ |nk1,nk2〉 dτ . (9)

To calculate the integrand, we proceed as follows. From (8), differ-
entiation with respect to τ yields

1√
nk1

〈
nk1

∣∣∣∂τ Â(+)

k1

∣∣∣nk1 − 1
〉

= 〈nk1 |∂τ |nk1〉 − 〈nk1 − 1 |∂τ |nk1 − 1〉
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