A new construction of rational electromagnetic knots

Olaf Lechtenfeld ${ }^{\mathrm{a}, *}$, Gleb Zhilin ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
${ }^{\text {b }}$ Department of Theoretical Physics and Astrophysics, Belarusian State University, Minsk 220004, Belarus

A R TICLE I NFO

Article history:
Received 1 December 2017
Received in revised form 16 March 2018
Accepted 10 April 2018
Available online 12 April 2018
Communicated by A.P. Fordy

Keywords:

Electromagnetic knots
Maxwell equations
Yang-Mills on conformally flat spacetime

Abstract

We set up a correspondence between solutions of the Yang-Mills equations on $\mathbb{R} \times S^{3}$ and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with a nontrivial example.

© 2018 Elsevier B.V. All rights reserved

1. Conformal equivalence of dS_{4} to $\mathcal{I} \times S^{\mathbf{3}}$ and two copies of $\mathbb{R}_{+}^{\mathbf{1 , 3}}$

The present work is motivated by the recent paper [1] coauthored by one of us, where analytic solutions of the Yang-Mills equations on four-dimensional de Sitter space dS_{4} are constructed. It is well known that de Sitter space can be realized as the singlesheeted hyperboloid
$-Z_{0}^{2}+Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}+Z_{4}^{2}=\ell^{2}$
embedded in five-dimensional Minkowski space $\mathbb{R}^{1,4}$ with the metric
$\mathrm{d} s^{2}=-\mathrm{d} Z_{0}^{2}+\mathrm{d} Z_{1}^{2}+\mathrm{d} Z_{2}^{2}+\mathrm{d} Z_{3}^{2}+\mathrm{d} Z_{4}^{2}$.
Constant Z_{0} slices of the hyperboloid reveal a three-sphere of varying radius. The following parametrization makes this structure explicit:
$Z_{0}=-\ell \cot \tau \quad$ and $\quad Z_{A}=\frac{\ell}{\sin \tau} \omega_{A} \quad$ for $\quad A=1, \ldots, 4$,
where the coordinates ω_{A} embed a unit three-sphere into R^{4}, and $0<\tau<\pi$, i.e.
$\omega_{A} \omega_{A}=1 \quad$ and $\quad \tau \in \mathcal{I}:=(0, \pi)$.

[^0]The metric of dS_{4} in such coordinates becomes
$\mathrm{ds} s^{2}=\frac{\ell^{2}}{\sin ^{2} \tau}\left(-\mathrm{d} \tau^{2}+\mathrm{d} \Omega_{3}^{2}\right)$,
where $\mathrm{d} \Omega_{3}^{2}$ denotes the metric of the unit three-sphere. Hence, four-dimensional de Sitter space is conformally equivalent to a finite Minkowskian cylinder over a three-sphere.

Part of it is also conformally equivalent to (half of) Minkowski space, by employing the parametrization
$Z_{0}=\frac{t^{2}-r^{2}-\ell^{2}}{2 t}, \quad Z_{1}=\ell \frac{x}{t}, \quad Z_{2}=\ell \frac{y}{t}$,
$Z_{3}=\ell \frac{z}{t}, \quad Z_{4}=\frac{r^{2}-t^{2}-\ell^{2}}{2 t}$,
where
$x, y, z \in \mathbb{R} \quad$ and $\quad r^{2}=x^{2}+y^{2}+z^{2} \quad$ but $\quad t \in \mathbb{R}_{+}$
since $t \rightarrow 0$ corresponds to $Z_{0} \rightarrow-\infty$. The metric of dS_{4} becomes
$\mathrm{d} s^{2}=\frac{\ell^{2}}{t^{2}}\left(-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)$,
hence these coordinates cover the future half $\mathbb{R}_{+}^{1,3}$ of Minkowski space. In a moment this parametrization will be extended to the whole of Minkowski space, by gluing a second copy of dS_{4} to provide for the $t<0$ half. The de Sitter radius ℓ provides a scale.

We shall need the direct relation between the cylinder and Minkowski coordinates. By comparing (1.3) and (1.6) we see that

Fig. 1. An illustration of the map between a cylinder $2 \mathcal{I} \times S^{3}$ and Minkowski space $R^{1,3}$. The Minkowski coordinates cover the shaded area. The boundary of this area is given by the curve $\omega_{4}=\cos \tau$. Each point is a two-sphere spanned by $\omega_{1,2,3}$, which is mapped to a sphere of constant r and t.

$$
\begin{align*}
-\cot \tau & =\frac{t^{2}-r^{2}-\ell^{2}}{2 \ell t}, \quad \omega_{1}=\gamma \frac{x}{\ell}, \quad \omega_{2}=\gamma \frac{y}{\ell} \\
\omega_{3} & =\gamma \frac{z}{\ell}, \quad \omega_{4}=\gamma \frac{r^{2}-t^{2}-\ell^{2}}{2 \ell^{2}} \tag{1.9}
\end{align*}
$$

where for convenience we abbreviated the frequent combination
$\gamma=\frac{2 \ell^{2}}{\sqrt{4 \ell^{2} t^{2}+\left(r^{2}-t^{2}+\ell^{2}\right)^{2}}}$.
If we fix r and let t vary from $-\infty$ to ∞, then $-\cot \tau$ sweeps two branches. We pick the branches so that $\tau \in(-\pi, 0)$ for $t<0$ and $\tau \in(0, \pi)$ for $t>0$, gluing them at $\tau=t=0$. Then inverting (1.9) produces τ as a regular function of (t, x, y, z). A more useful relation for the following is
$\exp (\mathrm{i} \tau)=\frac{(\ell+\mathrm{i} t)^{2}+r^{2}}{\sqrt{4 \ell^{2} t^{2}+\left(r^{2}-t^{2}+\ell^{2}\right)^{2}}}$.
Hence, comparing (1.5) and (1.8), we have given an explicit conformal equivalence between full Minkowski space $\mathbb{R}^{1,3}$ and a patch of a finite S^{3}-cylinder $2 \mathcal{I} \times S^{3}$ with $2 \mathcal{I}=(-\pi, \pi) \ni \tau$. The structure of this equivalence is best clarified by an illustration (see Fig. 1). Note that the whole infinite $R \times S^{3}$ cylinder can be covered by such patches. The neighboring patches can be related via shifting τ by π and changing the sign of ω_{4}. The latter action essentially implements a parity transformation.

2. The correspondence

In four spacetime dimensions Yang-Mills theory is conformally invariant. Therefore, instead of solving its equations of motion on Minkowski space one may solve them on the cylinder $2 \mathcal{I} \times S^{3}$. The latter has the added advantage yielding a manifestly $\mathrm{SO}(4)$-covariant formalism due to the three-sphere. Furthermore, S^{3} is the group manifold of $\mathrm{SU}(2)$, which enables the geometric parametrization (we pick the temporal gauge $A_{\tau}=0$)
$A=\sum_{a=1}^{3} X_{a}(\tau, \omega) e^{a}$,
where X_{a} are three functions of τ and $\omega \equiv\left\{\omega_{A}\right\}$ valued in some Lie algebra, and e^{a} are the three left-invariant one-forms on S^{3}. Since the conformal factor is irrelevant for the Yang-Mills equations we can translate Yang-Mills solutions on $2 \mathcal{I} \times S^{3}$ to solutions on $\mathbb{R}^{1,3}$ simply via a change of coordinates. The behavior at the boundary $\cos \tau=\omega_{4}$ is thereby transferred to fall-off properties at temporal infinity $t \rightarrow \pm \infty$.

To become explicit, we need Minkowski-coordinate expressions for the one-forms $e^{0}=\mathrm{d} \tau$ and e^{a}, which are subject to
$\mathrm{d} e^{a}+\varepsilon_{b c}^{a} e^{b} \wedge e^{c}=0 \quad$ and $\quad e^{a} e^{a}=\mathrm{d} \Omega_{3}^{2}$.

They can be constructed as
$e^{a}=-\eta_{B C}^{a} \omega_{B} \mathrm{~d} \omega_{C}$,
with $\eta_{B C}^{a}$ denoting the self-dual 't Hooft symbol (with non-zero components $\eta_{j k}^{i}=\varepsilon^{i}{ }_{j k}$ and $\eta_{j 4}^{i}=-\eta_{4 j}^{i}=\delta_{j}^{i}$). A straightforward computation yields $(a, j, k=1,2,3)$
$e^{0}=\frac{\gamma^{2}}{\ell^{3}}\left(\frac{1}{2}\left(t^{2}+r^{2}+\ell^{2}\right) \mathrm{d} t-t x^{k} \mathrm{~d} x^{k}\right)$,
$e^{a}=\frac{\gamma^{2}}{\ell^{3}}\left(t x^{a} \mathrm{~d} t-\left(\frac{1}{2}\left(t^{2}-r^{2}+\ell^{2}\right) \delta_{k}^{a}+x^{a} x^{k}+\ell \varepsilon^{a}{ }_{j k} x^{j}\right) \mathrm{d} x^{k}\right)$,
where we introduce the standard notation

$$
\begin{equation*}
\left.\left(x^{i}\right)=(x, y, z) \quad \text { and (for later }\right) \quad\left(x^{\mu}\right)=\left(x^{0}, x^{i}\right)=(t, x, y, z) \tag{2.5}
\end{equation*}
$$

Two remarks are in order. First, in Minkowski spacetime the parameter ℓ just sets an overall scale, which is needed for nontrivial solutions because the Yang-Mills equations themselves are scaleinvariant in four dimensions. Second, at fixed t the components for e^{0}, \ldots, e^{3} decay at least as $1 / r^{2}$ for large r. This is a good signal that the solutions translated from the cylinder will have finite energy in $\mathbb{R}^{1,3}$.

Let us see how this works by transferring some solutions obtained in $[1,2]$ to Minkowski spacetime. ${ }^{1}$ There, the authors restricted to $\mathrm{SO}(4)$-symmetric configurations by taking $X_{a}=X_{a}(\tau)$ to be independent of ω. This ansatz reduces the Yang-Mills equations to ordinary differential equations for the matrices X_{a}. On the cylinder, a simple static homogeneous solution is given by

$$
\begin{align*}
X_{a}(\tau) & =\frac{1}{2} T_{a} \quad \Rightarrow \\
A & =\frac{1}{2} g^{-1} \mathrm{~d} g \quad \text { for } g: S^{3} \rightarrow \operatorname{SU}(2) \tag{2.6}
\end{align*}
$$

where T_{a} are $s u(2)$ algebra generators scaled to obey $\left[T_{a}, T_{b}\right]=$ $2 \varepsilon_{a b c} T_{c}$. After inserting (2.4) and (2.6) into the ansatz (2.1) one recognizes the De Alfaro-Fubini-Furlan solution [3] (see also [4]). A more general case,

$$
\begin{equation*}
X_{a}(\tau)=\left(1+\frac{1}{2} q(\tau)\right) T_{a} \quad \text { with } \quad \frac{\mathrm{d}^{2} q}{\mathrm{~d} \tau^{2}}=-\frac{\partial V}{\partial q} \tag{2.7}
\end{equation*}
$$

for $V(q)=\frac{1}{2} q^{2}(q+2)^{2}$,
produces a family of $\mathrm{SO}(4)$-symmetric solutions studied by Lüscher [5]. For a review on analytic Yang-Mills solutions, see [6].

However, the interest of this paper is in Abelian solutions, i.e. electromagnetic field configurations. These may be embedded in the non-Abelian framework by demanding the three matrices X_{a} to all be proportional to the same fixed Lie-algebra element, say T_{3}. Such solutions on $2 \mathcal{I} \times S^{3}$ (with two proportionality coefficients vanishing) were also discussed in [2]. Since in the $U(1)$ case the matrix structure is irrelevant, from now on we take $X_{a}(\tau, \omega)$ simply to be real-valued functions and focus on Maxwell's equations. In the $\mathrm{SO}(4)$-invariant case, $X_{a}=X_{a}(\tau)$ are found to obey the oscillator equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \tau^{2}} X_{a}(\tau)=-4 X_{a}(\tau) \quad \Rightarrow \quad X_{a}(\tau)=c_{a} \cos \left(2\left(\tau-\tau_{a}\right)\right) \tag{2.8}
\end{equation*}
$$

yielding six integration constants in the general solution. Since the X_{a} are oscillating with a frequency of two, we can use the square

[^1]
https://daneshyari.com/en/article/8203375

Download Persian Version:
https://daneshyari.com/article/8203375

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: olaf.lechtenfeld@itp.uni-hannover.de (O. Lechtenfeld), zhilin@math.uni-hannover.de (G. Zhilin).

[^1]: ${ }^{1}$ In these papers cylinder solutions were transferred to dS_{4} solutions.

