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We set up a correspondence between solutions of the Yang–Mills equations on R × S3 and in Minkowski 
spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the 
Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, 
with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. 
We illustrate our method with a nontrivial example.
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1. Conformal equivalence of dS4 to I×S3 and two copies of RRR1,3
+

The present work is motivated by the recent paper [1] co-
authored by one of us, where analytic solutions of the Yang–Mills 
equations on four-dimensional de Sitter space dS4 are constructed. 
It is well known that de Sitter space can be realized as the single-
sheeted hyperboloid

−Z 2
0 + Z 2

1 + Z 2
2 + Z 2

3 + Z 2
4 = �2 (1.1)

embedded in five-dimensional Minkowski space R1,4 with the 
metric

ds2 = −dZ 2
0 + dZ 2

1 + dZ 2
2 + dZ 2

3 + dZ 2
4 . (1.2)

Constant Z0 slices of the hyperboloid reveal a three-sphere of vary-
ing radius. The following parametrization makes this structure ex-
plicit:

Z0 = −� cotτ and Z A = �

sinτ
ωA for A = 1, . . . ,4 ,

(1.3)

where the coordinates ωA embed a unit three-sphere into R4, and 
0 < τ < π , i.e.

ωAωA = 1 and τ ∈ I := (0,π) . (1.4)
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The metric of dS4 in such coordinates becomes

ds2 = �2

sin2 τ

(−dτ 2 + d�2
3

)
, (1.5)

where d�2
3 denotes the metric of the unit three-sphere. Hence, 

four-dimensional de Sitter space is conformally equivalent to a fi-
nite Minkowskian cylinder over a three-sphere.

Part of it is also conformally equivalent to (half of) Minkowski 
space, by employing the parametrization

Z0 = t2 − r2 − �2

2 t
, Z1 = �

x

t
, Z2 = �

y

t
,

Z3 = �
z

t
, Z4 = r2 − t2 − �2

2 t
,

(1.6)

where

x, y, z ∈R and r2 = x2 + y2 + z2 but t ∈ R+ (1.7)

since t → 0 corresponds to Z0 → −∞. The metric of dS4 becomes

ds2 = �2

t2

(−dt2 + dx2 + dy2 + dz2) , (1.8)

hence these coordinates cover the future half R1,3
+ of Minkowski 

space. In a moment this parametrization will be extended to the 
whole of Minkowski space, by gluing a second copy of dS4 to pro-
vide for the t < 0 half. The de Sitter radius � provides a scale.

We shall need the direct relation between the cylinder and 
Minkowski coordinates. By comparing (1.3) and (1.6) we see that
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Fig. 1. An illustration of the map between a cylinder 2I × S3 and Minkowski space 
R1,3. The Minkowski coordinates cover the shaded area. The boundary of this area 
is given by the curve ω4 = cosτ . Each point is a two-sphere spanned by ω1,2,3, 
which is mapped to a sphere of constant r and t .

− cotτ = t2 − r2 − �2

2� t
, ω1 = γ

x

�
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�
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�
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(1.9)

where for convenience we abbreviated the frequent combination

γ = 2�2√
4�2t2 + (r2 − t2 + �2)2

. (1.10)

If we fix r and let t vary from −∞ to ∞, then − cotτ sweeps 
two branches. We pick the branches so that τ ∈ (−π, 0) for t < 0
and τ ∈ (0, π) for t > 0, gluing them at τ = t = 0. Then inverting 
(1.9) produces τ as a regular function of (t, x, y, z). A more useful 
relation for the following is

exp(iτ ) = (� + it)2 + r2√
4�2t2 + (r2 − t2 + �2)2

. (1.11)

Hence, comparing (1.5) and (1.8), we have given an explicit confor-
mal equivalence between full Minkowski space R1,3 and a patch of 
a finite S3-cylinder 2I×S3 with 2I = (−π, π) � τ . The structure 
of this equivalence is best clarified by an illustration (see Fig. 1).
Note that the whole infinite R × S3 cylinder can be covered by 
such patches. The neighboring patches can be related via shifting 
τ by π and changing the sign of ω4. The latter action essentially 
implements a parity transformation.

2. The correspondence

In four spacetime dimensions Yang–Mills theory is confor-
mally invariant. Therefore, instead of solving its equations of mo-
tion on Minkowski space one may solve them on the cylinder 
2I×S3. The latter has the added advantage yielding a manifestly 
SO(4)-covariant formalism due to the three-sphere. Furthermore, 
S3 is the group manifold of SU(2), which enables the geometric 
parametrization (we pick the temporal gauge Aτ = 0)

A =
3∑

a=1

Xa(τ ,ω) ea , (2.1)

where Xa are three functions of τ and ω ≡ {ωA} valued in some 
Lie algebra, and ea are the three left-invariant one-forms on S3. 
Since the conformal factor is irrelevant for the Yang–Mills equa-
tions we can translate Yang–Mills solutions on 2I×S3 to solutions 
on R1,3 simply via a change of coordinates. The behavior at the 
boundary cosτ = ω4 is thereby transferred to fall-off properties at 
temporal infinity t → ±∞.

To become explicit, we need Minkowski-coordinate expressions 
for the one-forms e0 = dτ and ea , which are subject to

dea + εa
bc eb ∧ ec = 0 and eaea = d�2

3 . (2.2)

They can be constructed as

ea = −ηa
BC ωB dωC , (2.3)

with ηa
BC denoting the self-dual ’t Hooft symbol (with non-zero 

components ηi
jk = εi

jk and ηi
j4 = −ηi

4 j = δi
j). A straightforward 

computation yields (a, j, k = 1, 2, 3)

e0 = γ 2

�3

(
1
2 (t2 + r2 + �2)dt − t xkdxk

)
,

ea = γ 2

�3

(
t xadt − ( 1

2 (t2 − r2 + �2) δa
k + xaxk + �εa

jkx j)dxk
)

,

(2.4)

where we introduce the standard notation

(xi) = (x, y, z) and (for later) (xμ) = (x0, xi) = (t, x, y, z) .

(2.5)

Two remarks are in order. First, in Minkowski spacetime the pa-
rameter � just sets an overall scale, which is needed for nontrivial 
solutions because the Yang–Mills equations themselves are scale-
invariant in four dimensions. Second, at fixed t the components 
for e0, . . . , e3 decay at least as 1/r2 for large r. This is a good sig-
nal that the solutions translated from the cylinder will have finite 
energy in R1,3.

Let us see how this works by transferring some solutions ob-
tained in [1,2] to Minkowski spacetime.1 There, the authors re-
stricted to SO(4)-symmetric configurations by taking Xa = Xa(τ )

to be independent of ω. This ansatz reduces the Yang–Mills equa-
tions to ordinary differential equations for the matrices Xa . On the 
cylinder, a simple static homogeneous solution is given by

Xa(τ ) = 1
2 Ta ⇒

A = 1
2 g−1dg for g : S3 → SU(2) ,

(2.6)

where Ta are su(2) algebra generators scaled to obey [Ta, Tb] =
2εabc Tc . After inserting (2.4) and (2.6) into the ansatz (2.1) one 
recognizes the De Alfaro–Fubini–Furlan solution [3] (see also [4]). 
A more general case,

Xa(τ ) = (
1 + 1

2 q(τ )
)

Ta with
d2q

dτ 2
= −∂V

∂q
(2.7)

for V (q) = 1
2 q2(q+2)2 ,

produces a family of SO(4)-symmetric solutions studied by
Lüscher [5]. For a review on analytic Yang–Mills solutions, see [6].

However, the interest of this paper is in Abelian solutions, i.e. 
electromagnetic field configurations. These may be embedded in 
the non-Abelian framework by demanding the three matrices Xa to 
all be proportional to the same fixed Lie-algebra element, say T3. 
Such solutions on 2I×S3 (with two proportionality coefficients 
vanishing) were also discussed in [2]. Since in the U(1) case the 
matrix structure is irrelevant, from now on we take Xa(τ , ω) sim-
ply to be real-valued functions and focus on Maxwell’s equations. 
In the SO(4)-invariant case, Xa = Xa(τ ) are found to obey the os-
cillator equation

d2

dτ 2
Xa(τ ) = −4 Xa(τ ) ⇒ Xa(τ ) = ca cos

(
2(τ−τa)

)
, (2.8)

yielding six integration constants in the general solution. Since the 
Xa are oscillating with a frequency of two, we can use the square 

1 In these papers cylinder solutions were transferred to dS4 solutions.



Download English Version:

https://daneshyari.com/en/article/8203375

Download Persian Version:

https://daneshyari.com/article/8203375

Daneshyari.com

https://daneshyari.com/en/article/8203375
https://daneshyari.com/article/8203375
https://daneshyari.com

