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This Letter is focused on the impact of fractal topology on the transport processes governed by different 
kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely 
ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D . Consequently, the random 
walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor 
tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of 
random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random 
walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk 
with rests leads to super-diffusion, if D >

√
3, or sub-diffusion, if 1.5 < D <

√
3.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Mass and momentum transport are ubiquitous to natural pro-
cesses, as well as to engineered systems [1–3]. Transport processes 
in complex systems are strongly dependent on the system topol-
ogy [4–12]. Accordingly, fractal networks are widely used to model 
the transport phenomena in heterogeneous media (see, for exam-
ple, Refs. [1–12] and references therein). Therefore, understanding 
effects of fractal features on the transport properties is of crucial 
importance from both scientific and technological standpoints. In 
this regard, the fractal attributes can be characterized by a set 
of dimension numbers [12–17]. Specifically, the fractal mass dis-
tribution in the embedding Euclidean space is characterized by 
the fractal (e.g. self-similarity or Hausdorff) dimension D [12]. The 
fractal connectivity is characterized by the connectivity dimension 
d� also called the chemical or spreading dimension [12–14]. Gen-
erally, d� = D/dmin, where dmin is the fractal dimension of the 
minimum path between two randomly chosen points on the fractal 
[12–17]. The order of ramification R at site i of the path-connected 
fractal is equal to the number of significant bonds which one must 
cut in order to isolate an arbitrarily large bounded set of points 
connected to i [18]. For the infinitely ramified fractals this number 
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grows as a power of the size of this bounded set with the scaling 
exponent Q i . Accordingly, the ramification is characterized by the 
connectivity exponent Q = mini{Q i}, while for finitely ramified 
fractal Q = 0 [18]. In Ref. [10] it was proved that the connectivity 
exponent of the path-connected fractal is related to its topolog-
ical Hausdorff dimension Dt H as Q = Dt H − 1, while, generally, 
1 ≤ Dt H ≤ D (see Ref. [19]). The number of dynamical degrees of 
freedom of random walker on the fractal is equal to the spectral 
dimension ds [16,20]. The last is commonly defined either via the 
asymptotic behavior of density of vibrational modes N ∝ ωds−1, or 
by the scaling of probability that the random walker on the frac-
tal returns to the starting point after t steps Po ∝ tds/2 [12–17]. 
The mean squared displacement of the random walker scales with 
time as
〈
δ2〉 ∝ tγ , (1)

where γ is the diffusion exponent. The normal diffusion is char-
acterized by γ = 1. If γ �= 1, the diffusion is called anomalous. 
Specifically, the sub-diffusion is characterized by 0 < γ < 1, the 
super-diffusion is characterized by 1 < γ < 2, and the ballistic 
diffusion is characterized by γ = 2 [14]. The ratio DW = 2/γ is 
called the fractal dimension of random walk [12–17]. The classical 
Brownian motion is characterized by DW = 2, whereas the ran-
dom walk on path-connected fractals is characterized by DW ≥ 2
[12–19]. Accordingly, the diffusion on path-connected fractals be-
comes a key paradigm of the sub-diffusion [21–24]. For finitely 
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Fig. 1. Construction Cantor tartan: a) first four iterations of the ternary Cantor set C1
3

(α = ln 2/ln 3); b) Cartesian product C1
3 × [0, 1]; c) Cantor tartan T 1

3 = C1
3 × [0, 1] ∪

C1
3 × [1, 0] with the fractal dimension D = 1 + α = ln 6/ln 3; d) the intersection

C1
3 × [0, 1] ∩ C1

3 × [1, 0] = C1
3 × C1

3 with the fractal dimension 2α = ln 4/ln 3.

ramified fractals, there are some well developed theoretical tools 
concerning spectral asymptotics [23–28]. This allows to calculate 
the spectral dimension of the finitely ramified fractal exactly. How-
ever, yet there are no similar results for infinitely ramified fractals. 
Accordingly, all known values of ds for the infinitely ramified frac-
tals were obtained from numerical simulations.

In this work, we found that for a special class of infinitely ram-
ified fractals, called the Cantor tartans (see Ref. [29]), the spectral 
dimension ds is equal to the fractal (box-counting) dimension D , 
while the connectivity exponent is equal to Q = Dt H − 1 = D − 1. 
Therefore, the random walk on the Cantor tartan leads to the nor-
mal diffusion. On the other hand, the fractal geometry of Cantor 
tartans allows for a natural definition of power-law distributions 
of the waiting times and step lengths of random walkers. Accord-
ingly, different kinds of random walks on the Cantor tartans lead to 
different types of anomalous diffusion with the diffusion exponent 
determined by D . The rest of the paper is organized as follows. The 
fractal features of Cantor tartans are discussed in Section 2. In Sec-
tion 3 we prove that the spectral dimension of the Cantor tartan 
is equal to its fractal dimension. The scaling behavior of electrical 
resistance and absolute permeability of Cantor tartans are estab-
lished. Section 4 is devoted to study of different kinds of random 
walks on the Cantor tartans. The relevant conclusions are outlined 
in Section 5.

2. Fractal features of Cantor tartans

Cantor tartan is a union of two Cartesian products C y × [1, 0]
and Cx × [0, 1], such that the intersection between these prod-
ucts is a totally disconnected Cantor set Cxy = Cx × C y on a plane 
[1, 0] × [0, 1], while Cx ⊂ [1, 0] and C y ⊂ [0, 1] are the Cantor sets 
on real line (see Fig. 1). The ternary Cantor set is a classical exam-
ple of a perfect nowhere-dense set on the real line [30]. Geomet-
rically, it is constructed by iterative deletion of open middle-third 
intervals from remaining intervals of the previous iteration, start-
ing from the unit interval [0, 1] ad infinitum (see Fig. 1a). The 
fractal dimension of the ternary Cantor is equal to its similarity 
dimension α = ln 2/ ln 3. A generalized Cantor set with the frac-
tal dimension in the range of 0 < α < 1 can be constructed in a 

Fig. 2. First three iteration of the construction of: a) Sierpiński carpet S1
3 with 

D(S1
3) = ln 8/ln 3, Dt H (S1

3) = ln 6/ln 3, and Z∞(S1
3) = 3.2; and b) Cantor tar-

tan T 1
3 imbedded into Sierpiński carpet S1

3 . The number of square boxes with 
edge size lk = 3−k needed to cover the Cantor tartan after k iterations is 
equal to Nk = 2(2k3k) − 22k , so that the fractal (box-counting) dimension D =
− limk→∞(ln Nk/ln lk) = 1 + ln 2/ln 3 is equal to the fractal (self-similarity) dimen-
sion D = 1 + α < D(S1

3), while Dt H = D = Dt H (S1
3) and Z∞(T 1

3 ) = 2.

similar manner [31]. It has been proved that every Cantor set is 
homeomorphic to the ternary Cantor set and any compact metric 
space is a continuous image of the ternary Cantor set [32]. Due to 
these remarkable properties the totally disconnected Cantor sets 
have found a celebrated place in mathematical analysis and its 
applications (see Refs. [30–36] and references therein). However, 
obviously, there is no way to build a nontrivial Markov process 
having continuous trajectories on the totally disconnected Cantor 
set embedded in the Euclidean space. Accordingly, the random 
walks defined on the Cantor set are dependent on how the contin-
uum requirement is handled [37–41]. In contrast to this, the Cantor 
tartans are totally connected infinitely ramified fractals. The frac-
tal dimension of the Cartesian product C × [1, 0] (see Fig. 1b) is 
equal to D = 1 + α, while the fractal dimension of the union of fi-
nite number of fractals with the fractal dimensions Di is equal to 
D = maxi{Di} [42]. So, the fractal dimension of the Cantor tartan 
(see Fig. 1c) is equal to

D = 1 + α, (2)

whereas the intersection between C y × [1, 0] and Cx × [0, 1] (see 
Fig. 1d) has the fractal dimension Dint = 2α. In three dimen-
sional space E3 the Cantor tartan with the fractal dimension 
D = 1 + 2α can be constructed as a union of three orthogonal 
Cartesian products (Cx × C y) × [0, 0, 1], (Cx × Cz) × [0, 1, 0], and 
(C y × Cz) × [1, 0, 0].

Alternatively, the Cantor tartan can be constructed iteratively as 
a generalized Sierpiński carpet (see Fig. 2). A standard Sierpiński 
carpet Sm

n is obtained by iterative removing the interior of the cen-
tral segment of size m2 from each group of n2 subsquares, while 
m ≤ n − 2 (see Fig. 2a). It is a straightforward matter to see that 
the Cantor tartan T m

n is a subset of the standard Sierpiński carpet 
Sm

n (see Fig. 2b and Ref. [10] for more details). Accordingly, before 
analyzing the fractal features of Cantor tartans, let us outline the 
fractal attributes of generalized Sierpiński carpets Sm,κ

n constructed 
by removing m2 subsquares which form κ2 separated subarrays in-
terior the group of n2 subsquares (see Ref. [10]).

On the Sierpiński carpet Sm,κ
n there are three kinds of sites 

characterized by the local coordination numbers (numbers of near-
est neighborhoods) equal to 2, 3, and 4, respectively (see, for ex-
ample, Fig. 2a). The total number of sites on the Sierpiński carpet 
increases with the number of iteration steps k as Nk = 3Dk , where
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