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How entangled can a multi-party system possibly be?
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The geometric measure of entanglement of a pure quantum state is defined to be its distance to the space 
of pure product (separable) states. Given an n-partite system composed of subsystems of dimensions 
d1, . . . , dn , an upper bound for maximally allowable entanglement is derived in terms of geometric 
measure of entanglement. This upper bound is characterized exclusively by the dimensions d1, . . . , dn of 
composite subsystems. Numerous examples demonstrate that the upper bound appears to be reasonably 
tight.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The physical realization of quantum computing calls for a hi-
erarchical quantum network. The bottom level is the one- and 
two-qubit regime, where a photon interacts with matter (e.g., a 
trapped ion). In this regime, precise control must be exerted. Go-
ing one level up we enter the regime of quantum logic gates where 
typically ten or more qubits operate. One level further up is the 
fault-tolerant quantum error correction (QEC) architecture regime 
where hundreds of qubits reside. The final level is the algorithms 
regime. Being an essential resource for quantum computing, entan-
glement propagates over the dynamic quantum network to fulfill
desired quantum computing tasks. A fundamental question nat-
urally arises: how much entanglement can a quantum network 
encode?

If a quantum network is composed of qubits, that is, each par-
ticle lives in a two-dimensional Hilbert space, we end up with a 
multipartite qubit system. When restricted to the pure state case, 
the 2-qubit entanglement is well-understood. For the 3-qubit case, 
it is well-known that the GHZ state [1] is the most entangled state 
in terms of entanglement entropy and its degree of entanglement 
can also be easily computed by means of many other measures 
of entanglement. On the other hand, it has been reported [2] that 
the 3-qubit W-state [3] is more entangled than the 3-qubit GHZ 
state in terms of geometric measure of entanglement [4]. In fact, 
it is generally agreed that the characterization and quantification 
of entanglement of n-qubit systems for n > 3 is a difficult task. 
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In addition to qubits, for a typical quantum network, there may 
also exist other finite-level units, see several recent experimental 
set-ups in e.g., [5–8]. For such a hybrid quantum network, namely 
a heterogeneous multipartite system, it is unclear how much en-
tanglement can be allowed, not to mention how to quantify it 
efficiently.

A fundamental problem in quantum physics and also an impor-
tant problem in quantum information science is to detect whether 
a given state is entangled, and if so, how entangled it is. Several 
measures of quantum entanglement have already been proposed 
in the literature, e.g., Schmidt rank [9, Section 2.5], von Neu-
mann entropy [9, Section 11.3], entanglement of formation [10], 
quantum concurrence [11,12], the Peres–Horodecki criterion [13,
14]. Schmidt measure (also called Hartley entropy) [15] based on 
Candecomp/Parafac (CP) decomposition of tensors [16,17], relative 
entropy [18], negativity [19], the geometric measure of entangle-
ment, [4,20–30]. More can be found in the survey papers [31–33]. 
For the bipartite pure state case, a state is maximally entangled 
in terms of one measure is often also maximally entangled in 
terms of another measure. In this sense, different measures give 
consistent prediction. This is not true for multipartite cases. For a 
multipartite system, it is typical that two different measures attain 
their maxima at different quantum states [3,34].

In this paper we are interested in the following problem: Given 
an n-partite system which can be either homogeneous or hetero-
geneous, how entangled can its states be? We will use the geo-
metric measure to quantify the degree of entanglement. We show 
that an upper bound can be derived for entanglement content al-
lowed. Moreover, the upper bound is given exclusively in terms of 
dimensions of the composite subsystems. Not surprisingly, the up-
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per bound can always be reached in the case of bipartite systems. 
Interestingly, various examples demonstrate that upper bounds ap-
pear to be reasonably tight for many multipartite systems.

2. Geometric measure of entanglement (GME)

For a quantum n-partite system, a pure state |�〉 is an element 
in the tensor product Hilbert space H =H1 ⊗ · · · ⊗Hn ≡ ⊗n

k=1Hk . 
For each k = 1, . . . , n, denote the dimension of the composite 
subsystem Hk by dk and the orthonormal basis by {|e(k)

ik
〉 : ik =

1, . . . , dk}. For ease of presentation and without loss of generality, 
it is assumed in this paper that

d1 ≤ d2 ≤ · · · ≤ dn.

A pure state |�〉 ∈H is of the from

|�〉 =
∑

āi1···in |e(1)
i1

〉 ⊗ · · · ⊗ |e(n)
in

〉, (1)

where āi1···in ∈ C (the “bar” stands for the complex conjuga-
tion). The normalization condition of |�〉 is ‖ |�〉 ‖2 ≡ 〈�|�〉 =∑

i1,··· ,in |ai1···in |2 = 1. A state |φ〉 ∈ H is said to be separable if it 
is a product state

|φ〉 = |φ(1)〉 ⊗ · · · ⊗ |φ(n)〉, (2)

where

|φ(k)〉 =
∑

u(k)
ik

|e(k)
ik

〉 ∈ Hk, ∀k = 1, . . . ,n. (3)

If a state is not separable, then it is called an entangled state.
Next, let us briefly review the geometric measure of entan-

glement, more details can be found in, e.g., [4,20–30] and refer-
ences therein. Denote the set of all separable pure states in H
as Separ(H). For a general n-partite state |�〉 ∈ H, the geometric 
measure of its entanglement content can be defined as its distance 
to the space of separable states Separ(H), [4,29], i.e.,

GME� � min {‖ |�〉 − |φ〉 ‖ : |φ〉 ∈ Separ(H)} . (4)

Since the minimization in (4) is taken with a continuous function 
on a compact set Separ(H) in a finite dimensional space H, the 
minimizer does exist and is denoted by |φ�〉 ∈ Separ(H). Clearly, 
|φ�〉 is the separable state which is closest to |�〉.

For convenience, as in [4,29], instead of computing (4) directly, 
we study

GME2
� = ‖|�〉 − |φ�〉‖2

= min
{
‖|�〉 − |φ〉‖2 : |φ〉 ∈ Separ(H)

}
. (5)

Note that

‖|�〉 − |φ〉‖2 = 2 − 〈�|φ〉 − 〈φ|�〉 .

Thus the minimization problem in (5) is equivalent to the follow-
ing maximization problem:

max
〈φ(k)|φ(k)〉=1,k=1,··· ,n

{
〈�| ⊗n

k=1 φ(k)〉 + ⊗n
k=1 〈φ(k)|�〉

}
. (6)

Introducing Lagrange multipliers λk , k = 1, · · · , n, and applying 
complex differentiation [35] to get

〈�| ⊗n
j=1, j 
=k |φ( j)〉 = λk〈φ(k)|,

and

⊗n
j=1, j 
=k〈φ( j)|�〉 = λk|φ(k)〉.

Therefore,

λk = 〈�|φ〉 = 〈φ |�〉 , k = 1, . . . ,n

is a real number in the interval [−1, 1]. Denote the maximal over-
lap by, [4],

〈�|φ�〉� max{| 〈�|φ〉 | : |φ〉 ∈ Separ(H)}, (7)

and the geometric measure of entanglement of the pure state |�〉, 
defined in (4), is hence

GME� = √
2 − 2 〈�|φ�〉. (8)

Clearly, the smaller the maximal overlap 〈�|φ�〉 is, the bigger the 
distance GME� between |�〉 and the set of separable states.

Next, we represent the geometric measure of entanglement in 
terms of tensor (also called hypermatrix) [16,17]. For the pure state 
|�〉 in (1), we define an associated tensor A� by A� = (

ai1···in
) ∈

C
d1×···×dn . That is, we store all the probability amplitudes of the 

state |�〉 into a multi-array. Similarly, we associate each |φ(k)〉 in 
(3) with a column vector u(k) ∈ C

dk , k = 1, . . . , n. Then we define a 
c-number

A�u(1) · · · u(n) �
∑

ai1···in u(1)
i1

· · · u(n)
in

. (9)

With this notation, the inner product between |�〉 in (1) and |φ〉
in (2) can be re-written as

〈�|φ〉 = A�u(1) · · · u(n). (10)

Denote the spectral radius of the tensor A by

σ(A�) � max
‖u(k)‖2=1, k=1,··· ,n

|A�u(1) · · · u(n)|. (11)

(It is worth noting that when n = 2, the tensor A� reduces to a 
d1 × d2 matrix. In this case, σ(A�) is actually the largest singular 
value of the matrix A� .) Then the largest overlap in (7) can be 
expressed as

〈�|φ�〉 = σ(A�). (12)

As a result, the geometric measure of entanglement of the multi-
partite state |�〉, expressed in (8), becomes

GME� = √
2 − 2σ(A�). (13)

In the literature of tensor optimization, several algorithms have 
been developed for computing the spectral radius of a given tensor 
A. When A is symmetric, it can be proved that the spectral radius 
can be obtained when u(1) = · · · = u(n) , [36]. In particular, if further 
A is real and with all nonnegative entries, then the spectral radius 
is given by its largest Z-eigenvalue [29,37]. In general, the spectral 
radius of a symmetric tensor A is its largest unitary symmetric 
eigenvalue (US-eigenvalue) [26]. An algorithm has been developed 
to find the largest US-eigenvalue of a given symmetric tensor [38, 
Algorithm 4.1]. When A is non-symmetric, its spectral radius is its 
largest unitary eigenvalue (U-eigenvalue) [26]. The algorithm pro-
posed in [38] can be modified to find the largest U-eigenvalue of 
a given non-symmetric tensor, see the algorithm in APPENDIX. All 
the examples in this paper are computed using these two algo-
rithms.
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