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The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the 
stochastic variational method. This relation not only reproduces the well-known inequality in quantum 
mechanics but also is applicable to the Gross–Pitaevskii equation and the Navier–Stokes–Fourier equation, 
showing that the finite minimum uncertainty between the position and the momentum is not an 
inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss 
the possible implication of the present study in discussing the application of the hydrodynamic picture 
to microscopic systems, like relativistic heavy-ion collisions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Variational formulation is the standard approach to incorporate 
symmetries of a given system which play fundamental roles in its 
dynamics. Unfortunately, there exist several cases where such an 
approach is not applicable. Therefore the extension of the varia-
tional principle is worthwhile to be investigated [1].

Let us consider for example the variational formulation of clas-
sical mechanics. There, the evolution of a system is described by 
optimizing the corresponding action with respect to virtual tra-
jectories for which we can define at least the second order time 
derivative. Therefore, if we extend the domain of the virtual trajec-
tories to include non-differentiable trajectories such as the Brow-
nian motion, we should introduce a new variational approach [2]. 
Such a generalization of the variational principle is known as the 
stochastic control problem in the stochastic calculus and there are 
various works in this direction [1,3–19]. In this paper, we consider 
the stochastic variational method (SVM) proposed by Yasue [1].

This generalization provides us a possible unified description 
of classical and quantum behaviors. In fact, we can derive the 
Schrödinger equation by employing the stochastic variation to the 
action which leads to the Newton equation under the application 
of the classical variation. Although the framework of SVM was 
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originally proposed to reformulate Nelson’s stochastic quantization 
[20], its applicability is not restricted to the quantization prob-
lem. The Navier–Stokes–Fourier equation is obtain by employing 
the stochastic variation to the classical action of the Euler (ideal 
fluid) equation [21]. This method is useful also to introduce the 
model where the quantum and classical degrees of freedom coex-
ist [22]. It is also worth mentioning that Schrödinger developed a 
classical probability theory where the probability density is given 
by the product of real wave functions. This is called reciprocal pro-
cess [23–33]. In Ref. [27], it is shown that the evolution of the 
reciprocal process can be formulated in the form of SVM.

Such a generalized perspective enables us to find the correspon-
dence between stochastic and quantum behaviors. For example, 
there exists the well-known fundamental limitation for simultane-
ous measurements between two canonical variables in quantum 
mechanics. This uncertainty principle by Heisenberg constitutes 
one of the intrinsic features of quantum mechanics. Mathemati-
cally, its origin traces back to the non-commutative nature of the 
operators corresponding to the observables in question. On the 
other hand, in the framework of SVM, the observables are ex-
pressed as not only operators but also stochastic quantities [18,34]. 
Thus the algorithm to derive the uncertainty relation in SVM is not 
obvious. Once this is clarified, we may extend it to other systems 
which contain (sometimes hidden) intrinsically stochastic nature, 
such as hydrodynamics. The uncertainty relation of hydrodynam-
ics may further offer a clue to find possible quantum effects when 
hydrodynamic approaches are applied to microscopic systems, like 
relativistic heavy-ion collisions.
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As is pointed out by Nelson in Ref. [35], when the stochastic 
trajectory is identified with the real trajectory of a particle, a pre-
sumable requirement of physics (separability) cannot be employed. 
As is seen later, however, the stochastic trajectory does not neces-
sarily have a physical reality in our discussion of the uncertainty 
relation. Therefore we will not go into the details of the interpre-
tation of the stochastic trajectory in Nelson’s stochastic approach.

In this paper, we discuss the generalized uncertainty relation in 
the framework of SVM. For this purpose, we introduce the Hamil-
tonian formalism of SVM, which is applicable to particle systems 
and continuum media of quantum and classical dynamics on an 
equal footing. This enables us to define the standard deviation of 
the momentum for general stochastic trajectories and hence to de-
rive the generalized uncertainty relation. As a special case, this 
reduces to that in quantum mechanics. When it is applied to water 
at room temperature, we find that the obtained minimum uncer-
tainty is two orders of magnitude larger than that of quantum 
mechanics, although it is still sufficiently small compared to the 
coarse-grained scale of hydrodynamics. Such a minimum uncer-
tainty will play an important role in applying hydrodynamics to 
a microscopic system like relativistic heavy-ion collisions.

This paper is organized as follows. In Sec. 2, we first introduce 
the Hamiltonian form in SVM. In Sec. 3, we define the standard 
deviation of the momentum in SVM and derive the inequality be-
tween the standard deviations of the position and the momentum 
satisfied for stochastic systems. The applications to continuum me-
dia is discussed in Sec. 4. Section 5 is devoted to concluding re-
marks.

In the following, kB and c denote the Boltzmann constant and 
the speed of light, respectively.

2. Hamiltonian formulation of SVM

2.1. Stochastic Lagrangian

Before introducing the Hamiltonian form, we shortly review the 
standard formulation of SVM. See for example, Refs. [17,18] for de-
tails.

We consider the trajectory of a (virtual) particle described by 
the following forward stochastic differential equation (SDE),

dr(t) = u(r(t), t)dt + √
2νdWt (dt > 0). (1)

Here u(x, t) is a field associated with the particle velocity yet to 
be determined by the stochastic variation. In this paper, a differ-
ence dA(t) is always defined by A(t + dt) − A(t), independently 
of the sign of dt . The last term generates the zig-zag nature of 
the trajectory and called noise term. The intensity of the noise 
is characterized by ν . We consider that the noise is given by the 
(standard) Wiener process Wt which satisfies the following corre-
lation properties,

E[dWt] = 0, (2)

E[(dW i
t )(dW j

t )] = |dt|δi j, (i, j = x, y, z), (3)

where E[ ] indicates the average over stochastic events.
The particle motion described by Eq. (1) can be characterized 

also by introducing the probability distribution defined by

ρ(x, t) =
∫

d3ri ρI (ri)E[δ(3)(x − r(t))], (4)

where r(t) (more precisely r(t; ri) with ri being the initial position 
of the particle) is the solution of Eq. (1) and ρI (ri) is the particle 
distribution at an initial time ti . As is well-known, the evolution 

equation of ρ(x, t) is, using Eq. (1), given by the Fokker–Planck 
equation,

∂tρ(x, t) = ∇ · (−u(x, t) + ν∇)ρ(x, t). (5)

In the formulation of the variational method, we should fix not 
only an initial condition but also a final condition. This implies that 
the forward SDE alone is not sufficient. We have to consider also 
a backward process in time, dt < 0, describing a stochastic process 
from the final condition to the initial condition. That is, when the 
probability distribution evolves from ρI (x) at ti to ρF (x) = ρ(x, t f )

at a final time t f following Eq. (5), the time-reversed process de-
scribes the evolution from ρF (x) to ρI (x). Suppose that this pro-
cess is given by the backward SDE,

dr(t) = ũ(r(t), t)dt + √
2νdW̃t (dt < 0), (6)

where W̃t is the Wiener process again satisfying the same corre-
lation properties introduced above. These SDEs (1) and (6) are rel-
ative to the increasing and decreasing sub-σ -algebras used below 
to define the mean forward and backward derivatives, respectively 
[20,29]. For Eq. (6) to describe the same statistical ensemble given 
by the forward SDE (1), we find that the following consistency con-
dition should be satisfied [18],

u(x, t) = ũ(x, t) + 2ν∇ lnρ(x, t). (7)

The same property can be reproduced also from the nature of the 
Bayesian statistics [37].

For the stochastic trajectories, the usual definition of the parti-
cle velocity is not applicable because dr/dt is not well defined in 
the vanishing limit of dt due to the singular behavior of Wt (and 
W̃t ). The possible time differential in such a case is studied by Nel-
son [20], finding that there are two possibilities: one is the mean 
forward derivative,

Dr(t) = lim
dt→0+

E

[
r(t + dt) − r(t)

dt

∣∣∣Pt

]
, (8)

and the other the mean backward derivative,

D̃r(t) = lim
dt→0−

E

[
r(t + dt) − r(t)

dt

∣∣∣Ft

]
. (9)

These expectations are conditional averages, where Pt (Ft ) indi-
cates to fix values of r(t′) for t′ ≤ t (t′ ≥ t). For the σ -algebra 
of all measurable events of r(t), Pt and Ft represent an increas-
ing and a decreasing family of sub-σ -algebras [12]. Then, applying 
these definitions to Eqs. (1) and (6), we obtain Dr(t) = u(r(t), t)
and D̃r(t) = ũ(r(t), t), respectively.

To see how we introduce actions expressed in the above 
stochastic trajectory r(t), let us consider the classical Lagrangian 
for one particle, L(r, ̇r) = m

2 ṙ2(t) − V (r(t)) where m is the mass of 
the particle and V (x) is a potential distributed in x. Due to the ex-
istence of the two definitions of the time derivatives D and D̃ , the 
most general quadratic form of the kinetic energy in terms of the 
stochastic trajectory is given by [19]

m

2
ṙ2(t) −→
m

2

[
B+{A+(Dr(t))2 + A−(D̃r(t))2} + B−(Dr(t)) · (D̃r(t))

]
,

(10)

where

A± = 1/2 ± α1 B± = 1/2 ± α2, (11)
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