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It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in 
helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents 
of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex 
space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy 
spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature 
superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

© 2018 Elsevier B.V. All rights reserved.

1. Prologue

At temperatures smaller than 2.17 K (the lambda point), the 
quantum field that describes helium-4 becomes Bose–Einstein con-
densed, giving rise to a non-zero ground state that corresponds 
to an inviscid fluid (“superfluid”). The superfluid coexists with 
the (classical-like) “normal-fluid” of the Bogoliubov quasiparticles 
that comprise the thermalized quantum fluctuations. Turbulence 
in such systems, “finite-temperature superfluid turbulence” or FTST 
for short, has a unique characteristic [1,2]: it is the only known 
type of turbulence, such that two different types of fluid-vortices 
interact with each other. These are the topological defects in the 
superfluid (linear vortices of quantized circulation), and the clas-
sical vortices in the normal-fluid. In FTST, superfluid and normal-
fluid vortices interact via “mutual friction” forces [3,4]. Like any 
other problem in statistical physics, FTST can be studied in either 
of the Liouville/Hamiltonian representations, that are analogs of 
the Schroedinger/Heisenberg representations of quantum mechan-
ics, and in dissipative, normal-fluid turbulence context consist of 
the familiar Hopf/Navier–Stokes formulations. Notably, the “realiza-
tion” (R) formulations (Hamilton/Heisenberg/Navier–Stokes) can 
only be interpreted stochastically, i.e., subject to random initial 
conditions, they provide the means to generate sample paths of the 
random fields (e.g., velocity and pressure in turbulence) whose en-
semble averages are the key objectives of the theory, and the only 
quantities of empirical value. In turbulence research, an ergodic 
hypothesis allows the inference of ensemble averages via spatial 
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averaging. On the other hand, the “probabilistic” (P) formulations 
(Liouville/Schroedinger/Hopf) are closed, but in the context of ana-
lytically intractable problems like turbulence, they face difficulties 
in providing closed statistical moment equations that can accu-
rately capture the effects of vortical coherent structures and their 
interactions (the “turbulence problem”). For this reason, the present 
research employs the R formulation of FTST, and, by directly cal-
culating the interactions between vortical structures in both fluids, 
draws conclusions about its statistical structure. This approach has 
a long tradition in classical turbulence theory [5–7]. For example, 
[8] indicated that a system of viscous, reconnecting vortex tubes 
reproduces the Kolmogorov k−5/3 scaling of inertial range turbu-
lence, and [9] showed that systems of vortex elements give rise to 
Levy rather than Gaussian distributions for turbulent flow velocity. 
Similar connections between vortices and spectra [10–12], as well 
as, vortices and velocity distributions [13,14] were also obtained 
in quantum fluids. In FTST, [12] showed that interactions between 
one normal-fluid and many superfluid vortex rings generate a ten-
dency towards energy-level matching in the wavenumber inter-
vals of the velocity spectra which correspond to the normal-fluid 
ring diameter scale. Remarkably, there is no accompanying vortic-
ity matching, because, for typical normal-fluid Reynolds numbers, 
the inertia of the normal-fluid ring is much stronger than mutual-
friction effects on superfluid vortices, hence, the latter cannot be 
coaxed into aligning with the former within the time-scales of 
normal-fluid ring motion. Fig. 1 (left) shows the isosurfaces of 
enstrophy in homogeneous, isotropic Navier–Stokes turbulence of 
Taylor Reynolds number Reλ ≈ 100. The results have been pro-
duced with a projection-type, incompressible Navier–Stokes solver 
with periodic boundary conditions. The results of Fig. 1 indicate 
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Fig. 1. Left: Vorticity magnitude isosurfaces at level equal to 0.35 times its max-
imum value, for a homogeneous, isotropic, pure normal-fluid turbulence at Taylor 
Reynolds number Reλ ≈ 100. Although sheet-like structures are present, we pre-
dominantly see linear vortices. Right: The initial configuration consists of a straight 
normal-fluid vortex tube of circulation strength � = 20 × 103 ν , and a superfluid 
ring of circulation strength κ ≈ �/46, 747.

that the normal-fluid vorticity within the inertial range of turbu-
lence has a predominantly linear (rather than ring-like) structure, 
and although the vortices are curved and expected to move, the 
normal-fluid vortex motion effect is not as vigorous as in [12]. Per-
haps then, a straight tube could be a helpful (albeit approximate) 
model for the normal-fluid vortex structures shown in Fig. 1, in 
the sense, that, since a straight tube does not move, superfluid 
vorticity polarization effects would be present in the highest de-
gree possible. In other words, one would reasonably anticipate the 
phenomenology of actual FTST to lie in between the ring [12] and 
straight tube cases.

Notably, straight tube/superfluid vorticity interactions have 
been studied before [10,15], yet these studies are incomplete from 
the physics point of view, since they employ a prescribed normal-
flow, and ignore the effects of mutual-friction on the latter. In 
this work, we account for the full physics, since we employ the 
mesoscopic model of superfluid dynamics [3], that describes the 
interactions between (turbulent) vortex structures and individual
topological defects. We shall indicate that the combination of 
present and previous findings of the mesoscopic model lead to 
a novel formulation of the macroscopic (i.e., assuming a contin-
uous superfluid vorticity field) equations of superfluid dynamics. 
In particular [16,17], there are presently two macroscopic pre-
scriptions for the mutual-friction force per unit volume fMF (as 
it appears in the equation for the normal-fluid): (a) the Gorter 
and Mellink (GM) formula fGM = −ρsρn AV 2

nsVns , where ρs and 
ρn are (correspondingly) the superfluid and normal-fluid mass 
densities, Vns = Vn − Vs , where Vn , Vs are (correspondingly) the 
normal-fluid and superfluid velocities, Vns is the magnitude of 
Vns , and A is a function of the temperature T and Vns . The GM 
formula is consistent with a chaotic, isotropic, superfluid vortex 
tangle, hence, a tangle whose organization does not mimic the 
(inertial range) vortex structure of normal-fluid turbulence shown 
in Fig. 1, (b) the Hall–Vinen–Bekharevich–Khalatnikov (HVBK) for-
mula fHVBK = Bρsρn

ρωs
ωs ×(ωs ×Vns) + B ′ρsρn

ρ ωs ×Vns , where B , B ′ are 
macroscopic mutual-friction parameters that depend on tempera-
ture, second sound frequency, and flow velocity, ρ = ρs + ρn , ωs

is the continuous superfluid vorticity field, and ωs its magnitude. 
Although the HVBK formula has also been employed in homoge-
neous, isotropic turbulence situations, it is, in principle, a model of 
rotating superfluid turbulence, since it assumes a highly organized 
superfluid vorticity state, in the form of superfluid vortex bundles 
that mimic normal-fluid vorticity structures. Although the organi-
zation of flow vorticity into columnar structures of large-eddies 
that are parallel to the rotation axis is typical of rotating turbu-
lent flows [5], we shall see here that, in the absence of rotation, 
they do not follow from more microscopic formulations of super-
fluid dynamics. The aforementioned presuppositions carry over to 
the vortex dynamics of the HVBK equations as formulated and 

solved in the pioneering contributions of Schwarz [18]. It is impor-
tant to note here that, since HVBK vortex dynamics refers to the 
vortex lines in the continuous superfluid vorticity field, its com-
parison with experiments that measure the vortex line density of 
discrete topological defects tangles (that, moreover, do not obey 
organization assumptions embodied in the HVBK equations), is 
not methodologically sound. The usefulness of HVBK vortex dy-
namics (as a means for understanding the structure of superfluid 
turbulent flows) becomes even more questionable when we notice 
that, in previously published papers following this approach, the 
normal-fluid is kinematically prescribed, instead of been dynam-
ically resolved via the HVBK equation for the normal-fluid. The 
latter shortcoming (which is on top of the aforementioned HVBK 
presuppositions) is a very important one, since, as we shall demon-
strate here, the effects of superfluid back-reaction on normal-fluid 
vortices are simply too important to be ignored [3,4,12]. The meso-
scopic model on the other hand, describes individual topological 
defects whose dynamics are coupled with the Navier–Stokes equa-
tions and not with the HVBK equation for the normal-fluid. Be-
cause of these characteristics, the mesoscopic model has predicted
quantities in direct correspondence and impressive agreement with 
experiments. These are the prediction of tracer particle velocities 
in thermal counterflow turbulence [19,20], and the temporal scal-
ing for the superfluid vortex line density in grid turbulence decay 
[4] experiments. As we shall see, a combination of current and 
previous mesoscopic model results indicate that neither GM or 
HVBK formulas are directly applicable to homogeneous, isotropic 
superfluid turbulence. Instead, we propose here a new formula for 
macroscopic mutual-friction effects that takes into account topo-
logical defect curvature and superfluid vorticity intensity factors. 
An important goal is to explain the phenomenology of, recently 
performed, fully resolved superfluid turbulence calculations [3,4]
by analysing in great detail the physics of key elementary vortex 
processes in superfluid turbulence.

2. Mathematical model and solution methods

As mentioned above, the R formulation of superfluid tur-
bulence follows here the incompressible, mesoscopic model of 
refs. [3,4]. In this formulation, discrete (albeit coarse-grained) topo-
logical defects (vortices) in the condensate, interact with a normal-
fluid continuum. The motion of point Xv (t) belonging to the super-
fluid vortex tangle L is governed by the zero sum of (from start to 
end) Magnus, Hall–Vinen, Iordanskii, and reconnection forces

ρsκX′
v × (Vs − Ẋv) + D0X′

v × [X′
v × (Vn − Ẋv)] +

ρnκX′
v × (Vn − Ẋv) −

∫
L

d|XL| μv R̈ δ(|Xv − XL|) = 0.

Here, μv is the vortex mass per unit length, X′
v the unit tan-

gent to the line vortices, ρs the superfluid mass density, κ the 
quantum of circulation, ρn the normal-fluid mass density, D0 the 
coefficient of the Hall–Vinen force, Vs the Biot–Savart velocity, 
Vs(Xv ) = κ

4π

∫
L

(x−Xv )×dx
|x−Xv |3 , and R a deterministic, pointwise-exact, 

reconnection-jump process that models the topological (i.e., cut and 
glue) transition from one smooth superfluid tangle configuration 
to another [3,21]. It is important to note here that, although this 
equation does not include vortex inertia/acceleration, it includes 
the vortex mass per unit length μv in the formal term depicting 
reconnections. This is not an inconsistency, since in the recon-
nection term, μv multiplies R̈ which is an (instantaneous) jump
process, that is not resolved at the mesoscopic range of scales of in-
terest here, hence, it does not contribute to the vortex acceleration. 
In other words, since the reconnection process is written formally 
as a jump process, it is not dynamically resolved (and the actual 
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