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A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our 
results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room 
temperature with bias voltages between 90–220 mV, which is quite large compared with the one of 
traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of 
the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. 
The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of 
Wannier–Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of negative differential resistance (NDR) in 
an Esaki tunneling diode [1], it has been applied to design numer-
ous devices such as high frequency oscillators, memory cells, and 
multiple-valued logic [2–5]. In addition to Esaki tunneling diodes, 
NDR has also been observed in various systems, including car-
bon nanotubes [6] and Fullerene-C60 [7]. Recently, graphene has 
attracted much interest because graphene-based devices exhibit 
may have better performance than their semiconductor counter-
parts in terms of speed and power consumption [8–10]. This result 
is the consequence of the unique properties of graphene, such as 
high mobility of carriers, which provides high current densities. 
NDR has also been investigated in graphene-based devices, such as 
monolayer graphene [11–15], bilayer graphene [16,17], graphene 
nanoribbons [18], and graphene tunnel diodes [19]. However, com-
pared with the traditional semiconductor-based NDR devices, the 
peak-to-valley ratios (PVR) of NDR in two-dimensional graphene-
based devices are ordinary.

The concept of a superlattice, which is a man-made material 
that consists of alternating layers of two dissimilar materials with 
layer thicknesses in the order of nanometers, has been used in 
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photonics [20–23], spintronics [24–29], and electronics [30–32]. 
One of the most important advantages of a superlattice is its flex-
ibility compared with a natural material [33]. Recent studies sug-
gested that the electronic behaviors of massless Dirac fermions in 
graphene have been predicted by applying external period poten-
tials [34,35] and high PVR devices have been reported in experi-
ment [36,37]. Therefore, it is an interesting topic to improve the 
NDR of graphene-based devices by using the concept of a super-
lattice. To the best of our knowledge, only a fraction of studies 
have focused on various important applications of NDR by com-
bining the unusual characteristics of superlattices with graphene. 
Although extraordinary NDR effect at low temperature in graphene 
superlattices have been proposed by doping [38] or top gate volt-
age [39], the performance of the NDR in those devices at room 
temperature are usually limited. The reason is that the Fermi–
Dirac distribution also strongly influences NDR in the current. 
In addition, there are many flexible operations of nanostructured 
graphene in the entire system due to the tunable potential by 
metal electrodes on graphene [40]. In this paper, the PVR of the 
NDR in a 7-cell graphene superlattice can be optimized up to 21 at 
room temperature, provided that the barrier/well thickness of the 
graphene superlattice is properly designed. The significant NDR ef-
fect is observed in wide thicknesses of barrier and a large number 
of cells. The physical mechanism will also be explained by both the 
transmission spectrum and Fermi–Dirac distribution.
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Fig. 1. (a) Upper panel shows the monolayer graphene nanoribbon embedded in insulator and substrate, with n-strips of electrode on top of the insulator. These strips of 
electrode and substrate are applied with the top gate voltage and back gate voltage respectively. The graphene nanoribbon is connected to source and drain leads, resulting 
in biased transport under source-drain voltage, V S D . The corresponding potential profiles of the unbiased device are shown in the lower panel. (b) Potential profiles for the 
three-barrier superlattice with source-drain voltage V S D = 600 mV.

2. Model and formulation

An n-barrier armchair graphene nanoribbon (AGNR) superlat-
tice is shown in Fig. 1(a). The monolayer graphene nanoribbon 
is embedded in an insulator and substrate, with n-strips of elec-
trode on top of the insulator. These strips of electrode and sub-
strate are applied with the top gate voltage and back gate voltage, 
respectively. The top gate voltage is 230 mV throughout this pa-
per. The AGNR superlattice is further connected to source and 
drain leads, resulting in biased transport under source-drain volt-
age, V S D . The chemical potential can be adjusted by the back gate 
voltage, thereby setting the chemical potential for μ = eV G . This 
model requires the graphene nanoribbon to be ultraclean and ul-
trasmooth, and the edge effect can be neglected. Moreover, the 
electrode contact is idealized, and the voltages drop linearly along 
the sample. Fig. 1(b) shows the potential profile of a n-cell AGNR 
superlattice. The potential profile is eV j = U j − eV S D(

x j
L ) where 

x j is the center coordinate of jth layer, and L is the length of 
the device between source and drain leads. The width of the bar-
rier and well are denoted by dB and dW , respectively. The low-
energy electronic state of graphene can be calculated by the Dirac 
equation [41]. The Hamiltonian for carriers near the Dirac points 
K = (4π/3a,0) and K ′ = (−4π/3a,0) can be expressed as

H = v F

(
U (x) px ∓ ip y

px ± ip y U (x)

)
, (1)

where px = −ih̄ ∂
∂x and p y = −ih̄ ∂

∂ y are the momentum operators, 
U (x) is the potential barrier by the top gate voltage, and v F is 
the Fermi velocity. The system investigated in this study is ho-
mogeneous along the y direction. To solve the Dirac Hamiltonian 
H� = E�, the eigenvector is given by a state of two-component 
pseudospinor � = (ψA,ψB)T. The detailed formulas of eigenvector 
inside the jth potential can be expressed as

� j =
{

A j

(
1

eiθ j

)
eiqx, j ·x + B j

(
1

−e−iθ j

)
e−iqx, j ·x

}
eiky ·y, (2)

where the subscript j denotes each element in the jth segment, 
A j and B j are the amplitude coefficients of incident and reflected 
waves, respectively, cos θ j = qx, j/k j , k j = (

E − U j
)
/h̄v F , ky is the 

y component of the wave vector, and qx, j is the x component of 
the wave vector, which is qx, j = sign(k j)

√
k2

j − k2
y for k2

j > k2
y and 

qx, j = i
√

k2
y − k2

j for k2
j < k2

y . The boundary conditions at the edges 
of an AGNR lead to the quantization of the transverse wave vec-
tor. For semiconducting AGNRs, the allowed transverse wave vector ∣∣ky,m

∣∣ = mπ/3L y , where m = 1, 2, 4, 5, 7, 8 . . . . The resulting half-
bandgap is obtained by E0 = π h̄v F /3L y [42]. The transverse mo-
mentum ky is conserved because the potentials depend only on 
the longitudinal coordinate.

Based on the boundary conditions and the transport model of 
electron, the relation of amplitude coefficients for incident and re-
flected waves between the neighbor layers is{

A j+1
B j+1

}
= (

P j+1
)−1

F j

{
A j
B j

}
, (3)

where F j = M j P j , M j =
(

eiqx, j ·d j e−iqx, j ·d j

ei(qx, j ·d j+θ j) −e−i(θ j+qx, j ·d j)

)
, and P j =(

1 1
eiθ j −e−iθ j

)
. Therefore, the total transfer matrix in the entire 

system is written as{
AD

B D

}
= Ht

{
A S

B S

}
, (4)

where the total transfer matrix Ht is given by

Ht = P−1
D

⎛
⎝ n∏

j=1

M j P−1
j

⎞
⎠ P S . (5)
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